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Precise individual measures of  
inhibitory control
 

Hyejin J. Lee    1,2,3,8  , Derek M. Smith4,5,8, Clifford E. Hauenstein4,6, 
Ally Dworetsky1,5, Brian T. Kraus5, Megan Dorn    5, Derek Evan Nee    1 & 
Caterina Gratton    1,2,3,5,7 

Inhibitory control is essential to daily function and is a key factor in 
numerous psychiatric disorders. One popular measure of inhibitory 
control is the congruency effect, but recent research has highlighted its 
low reliability, limiting its use for clinical and basic research questions. 
Here we asked whether it is possible to obtain precise individual estimates 
of the congruency effect. We sampled more than 5,000 trials from nine 
participants across four inhibitory control tasks. This dataset, made public 
for the community, demonstrates that precise individual estimates are 
achievable but with higher numbers of trials than typically collected with 
common tools. Using a combination of datasets and simulations, we show 
that extensive sampling is necessary to reveal true individual differences and 
improve observations from alternative modelling approaches. We share our 
dataset as a resource to further understand sources of variation in inhibitory 
control, ultimately advancing research in this critical field.

Inhibitory control refers to the ability to resist interference and sup-
press dominant responses to carry out goal-directed behaviour1–8. 
Inhibitory control helps to enable everyday activities and achieve 
goals on diverse timescales9–11. Deficits in inhibitory control have 
been implicated in a number of psychiatric disorders, including obses-
sive–compulsive disorder12,13, schizophrenia14,15 and attention deficit 
hyperactivity disorder16. Accordingly, multiple efforts are underway 
to understand variation in inhibitory control across individuals as well 
as within a person over the lifespan, and to connect this variation with 
neurobiological markers. These include large consortium data collec-
tion projects, such as the Adolescent Brain Cognitive Development 
(ABCD) study17.

Inhibitory control in laboratory settings is often examined with 
tasks that contrast the impact of high-conflict distractors (that is, 
incongruent trials) relative to low conflict situations (congruent tri-
als). The difference between these types of trials is referred to as the 

congruency effect18–20 and is taken to be a reflection of control (note 
that some may suggest that ‘interference control’ is more appropriate 
for describing this process with a mechanistic focus; however, given 
that ‘inhibitory control’ is more commonly used (for example, National 
Institutes of Health (NIH) Toolbox Flanker Inhibitory Control and 
Attention Test), we also use it here without committing to any specific 
underlying mechanisms of control). The congruency effect has been 
extensively tested and highly replicated21. It has also been suggested 
that the congruency effect is stable across time22, indicating that it 
may represent a trait-like characteristic of a person. These properties 
have prompted many to use the congruency effect to investigate both 
individual-level inhibitory control within and between individuals23–25 
and relate this variation to neural activity3,26–29.

However, poor reliability is likely to be a major obstacle in these 
enterprises30. Several studies have reported low reliability in measures 
of inhibitory control, particularly in the widely used congruency effect, 
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many trials are needed to achieve the desired levels of reliability and 
whether this number is feasible without requiring prohibitively long 
testing. Finally, using this dataset, along with other public datasets and 
simulations, we examined how collecting more trials affects estimates 
of between-participant variability and the performance of advance 
modelling approaches. We provide the EPIC dataset as a resource for 
the community to further assess measurement properties of inhibitory 
control within individuals over time and as bases for simulation stud-
ies and model validation to benchmark new analysis methods. These 
investigations are essential to determine whether inhibitory control 
measures are useful to pursue in basic and clinical research projects.

Results
Overview
To examine the precision of inhibitory control measures, we collected 
EPIC, a dataset with extensive sampling from 9 participants who were 
tested on 4 inhibitory control tasks across 36 sessions (Fig. 1). This 
dataset includes 3 tasks with congruency effects: a flanker task (with 
a total of 7,200 trials per participant), a prime–probe task (6,912 tri-
als per participant) and a Stroop task (7,776 trials per participant). 
The dataset also includes a fourth inhibitory control task (go/no-go, 
7,200 trials per participant) that was not analysed here as we focused 
on examining the congruency effect. The data from all four tasks are 
made into a publicly available resource associated with this publication.

In addition, we replicated and extended the findings from the EPIC 
dataset using two publicly available datasets: (1) a dataset by Robinson 
and Steyvers49, collected online through Lumosity, consisting of 495 
participants in a flanker task with 491–5,939 trials per participant, 
and (2) a dataset by Hedge et al.32, collected in-person, consisting of 
112 participants in the flanker and Stroop tasks with 1,440 trials per 
participant. To aid in interpretating these results, we also generated 
simulated models based on all three datasets.

The results are organized into three major groups. The first group 
of results (‘Congruency effects can be measured with high precision’ 
to ‘Precise congruency effects need more than 1,000 trials’ sections) 
shows empirical results from our EPIC data to assess the efficacy of 
extensive testing. We examined (1) peak individual-level precision 

which relies on reaction time difference scores31–33. This issue limits 
the ability of these measures to be used for clinical applications34,35 
and for predicting self-regulation in the real world36,37. Low reliabil-
ity may also confound theoretical interpretations to other control 
functions33,38,39. Importantly, poor reliability is a major obstacle to 
identifying relationships between the brain and behaviour40; recent 
studies have demonstrated that, when the reliability of behavioural 
measures is low, brain-based prediction of the behavioural phenotype 
is extremely poor41,42. Unsurprisingly, given this background, inhibitory 
control measured with the NIH Toolbox Flanker Inhibitory Control and 
Attention Test had one of the lowest brain-based prediction accuracies 
in the Human Connectome Project (HCP) dataset43.

The low reliability of the congruency effect has been attrib-
uted to a combination of high measurement error (leading to 
low within-participant precision) and limitations in estimating 
between-participant variation30,32,39. Some have suggested that esti-
mates of the congruency effect could be improved by recruiting more 
diverse samples44, modifying experimental designs45 or using modelling 
approaches, such as drift–diffusion modelling36,46, factor analysis47 or 
hierarchical modelling33,39,48. However, to reduce measurement error, 
the most straightforward approach is to increase the number of trials 
collected per participant. Past research has used simulations to call atten-
tion to the need for larger trial numbers to increase reliability39. As of yet, 
it remains an open question whether it is possible to achieve a sufficient 
level of precision in individual-level estimates and what trial number is 
needed for these estimates to have utility as a phenotypic marker.

Here, we sought to empirically estimate the peak precision pos-
sible for the congruency effect once measurement error was reduced 
by collecting a very large number of trials. To this end, we collected data 
from 9 participants across 36 sessions as they completed 4 inhibitory 
control tasks (3 of which included congruency effects). We call the 
dataset EPIC or the Extended Precision measurement of Inhibitory 
Control. Using this approach, we sought to determine the maximal 
precision of the congruency effect that can be achieved within indi-
viduals. We used this approach to ask whether increasing trial numbers 
effectively reduces measurement error without introducing system-
atic variability related to repeated testing. We also investigated how 

EPIC dataset
Nine participants

36-session sequence example

+ <<<<< + <<><<

+

+ RED + RED

+ X + B

Congruent Incongruent

Congruent Incongruent

Go No-go

3 4 5 6 7 8 9 10 12

Y
Congruent

Y
Incongruent

Y
Congruent

Z
Incongruent

Trial sequence

In each session

3
Inhibitory

control
tasks

2
Reaction

time
task

1
Qualtrics

survey

Inhibitory control tasks

Flanker task
7,200 trials

Prime–probe task
6,912 trials

Stroop task
7,776 trials

Go/no-go task
7,200 trials

Fig. 1 | EPIC dataset. Nine participants (5 females and 4 males, ages 18–30 years; 
one participant was excluded from the current analyses) completed 4 inhibitory 
control tasks across 36 sessions (with 2 tasks per session; the order was 
counterbalanced across participants). Exemplar trial sequences of the tasks are 
shown. Modifications to the task stimuli and background colour were made for 
visualization purposes. Each session started with a Qualtrics survey assessing 

daily activities and mood, followed by a simple reaction time task measuring 
reaction time to a single visual stimulus (that is, a white square). Two of the 
four inhibitory control tasks were then administered. We also collected Big 
Five personality traits. Participants were tested either in the laboratory or at 
home. More details on the dataset and experimental designs can be found in the 
Methods. The dataset is available at https://osf.io/jk9nb/.
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in the congruency effect, (2) temporal effects related to repeated 
testing and (3) the number of trials needed to obtain reliable congru-
ency effects. The second group of results (‘Repeated measures reduce 
variability in congruency estimates’ to ‘Trial counts matter more than 
participants in reliability’ sections) presents empirical and simulation 
results from the two public datasets with larger samples to replicate 
and extend our EPIC results. We examined (1) the impact of trial num-
bers on within- and between-participant variability, (2) how extended 
trial sampling ensures stable results for both estimates, (3) the impact 
of within-participant variability on between-participant variability 
and (4) how increasing the number of trials and participants affects 

reliability. The final section (‘Advanced models benefit from more 
within-participant data’ section) uses all three datasets in combina-
tion with empirical and simulation results to demonstrate how trial 
numbers influence diverse modelling approaches (drift–diffusion 
modelling, factor analysis and Bayesian hierarchical modelling) used 
to address reliability concerns in inhibitory control.

Congruency effects can be measured with high precision
First, we examined the maximal precision with which congruency 
effects can be measured in each participant once sampling variability 
is addressed using our extensively sampled dataset.
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Fig. 2 | Large within-participant variability versus precise individual 
estimates. a, The session mean reaction time for the congruency effect. Each 
violin plot represents a participant’s mean congruency effect across sessions 
(one dot per session, totalling 18). The plot depicts the probability density 
of the congruency effect across trials (400 trials for the flanker task, 384 for 
the prime–probe task and 288 for the Stroop task; note that the total for the 
Stroop task excludes neutral trials). The white dot indicates the median of the 
18 sessions. The height of the density plot, which reflects the relative frequency 
of congruency effect values, shows an extended oblong shape rather than 
clustering around a single value, suggesting large variability within participants 
across sessions. b, Grand mean reaction time across all sessions (7,200 trials for 
the flanker task, 6,912 for the prime–probe task and 5,184 for the Stroop task). 

The error bars represent the 95% confidence intervals of the mean, calculated 
from 1,000 bootstraps. These error bars indicate that highly precise individual 
estimates of congruency effects are possible when sampling more than 5,000 
trials. c, The session mean accuracy for the congruency effect, illustrated in 
violin plots. Consistent with a, large session-level variability within participants 
is observed. d, The grand mean accuracy across all sessions and its error 
bars. Consistent with b, the accuracy data demonstrate substantially smaller 
variability with more than 5,000 trials compared with 400 trials. Performance 
was generally high with a smaller congruency effect on accuracy than on 
reaction time across participants. Accuracy and reaction time for each condition 
(congruent or incongruent) are shown separately in Supplementary Figs. 2 and 3. 
IES are presented in Supplementary Figs. 1 and 4.
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Figure 2 shows each participant's mean reaction time and accu-
racy for the congruency effect. A comparison of the violin plot for 
18 sessions with the grand mean of all sessions shows that precise 
individual-level congruency effects can be achieved with sufficient 
sampling. Across participants, the average 95% confidence interval 
for the reaction time congruency effect in any given session (288–
400 trials) is 17.98 ms for the flanker task, 25.33 ms for the prime–
probe task and 58.45 ms for the Stroop task. Considering the grand  
mean congruency effects (44.01 ms for flanker, 73.98 ms for prime–
probe and 58.20 ms for Stroop) along with the between-participant 
standard deviation (15.51 ms for flanker, 19.70 ms for prime–probe 
and 28.05 ms for Stroop), these are high levels of error. Consider 
randomly selecting a single session point from each participant: with 
this level of variation, rank ordering participants would frequently 
be inaccurate.

By contrast, the congruency effect calculated from the full 5,184–
7,200 trials across all sessions indicates that single individuals can 
have precise congruency effect estimates. With this number of trials, 
the 95% confidence intervals are, on average, 4.66 ms for the flanker 
task, 6.33 ms for the prime–probe task and 14.12 ms for the Stroop task. 
These values are much smaller than those observed for a single session’s 
worth of data. These estimates are precise enough to show consistent 
interparticipant differences even in this small sample of participants. 
For example, EPIC 07 shows relatively small congruency effects in all 
three tasks whereas EPIC 08 shows large congruency effects. The rank 
orderings between EPIC 05 and 06, 07 and 08, and 10 and 12 are consist-
ent across the tasks. However, some effects differ by task. For example, 
the relative positions of EPIC 03 and 04 swap between the flanker and 
Stroop tasks (see Extended Data Fig. 1 for rank order consistency across 
the three tasks).

Accuracy results also demonstrate that more precise estimates 
can be achieved with larger amounts of data. We also found consist-
ent results in the inverse efficiency scores (IES), which combine reac-
tion time and accuracy to account for speed–accuracy trade-offs  
(Supplementary Fig. 1). For a summary of the individual grand means 
and standard errors of reaction time, accuracy and IES, see Supple-
mentary Table 1.

In addition, we replicate previous findings31, showing that session- 
by-session variability is lower for incongruent and congruent perfor-
mance when measured separately (Supplementary Figs. 2–4). This is 
because difference scores are associated with an increase in sampling 
variability; when the two components of a difference score are corre-
lated, as is the case with congruent and incongruent trials, the subtrac-
tion removes reliable variance, increasing the proportion of variance 
attributable to error30,31,50,51. Given recent suggestions to replace the 
congruency effect with incongruent trial performance31,52, we con-
ducted an analysis on the rank order consistency between congruency 
effects and incongruent trial performance to examine whether the 
two are measuring similar constructs using the two public datasets 
(Extended Data Fig. 2). The results demonstrate that they are corre-
lated, but inconsistency in rank orders also exists, lending caution to 
the idea of substituting incongruent trial performance alone for the 
congruency effect.

Extensive data collection is feasible
While extensive repetition reduces session-level variability within indi-
viduals, it may introduce variability related to temporal effects. We 
examined three potential effects in our dataset to evaluate the practi-
cality of collecting large numbers of trials: (1) performance improve-
ment over time, (2) performance impairment across sessions and (3) 
performance impairment within sessions. Performance improvement 
may be linked to practice or learning effects over time. Performance 
impairments, whether across or within sessions, could be due to a vari-
ety of sources, such as participants losing interest, motivation, concen-
tration or experiencing increased fatigue. Note that our participants 

performed 2 sessions for each task per week for 9 weeks. Single sessions 
included 2 tasks and lasted for ~45–60 min.

Extended Data Fig. 3 shows decreases in the magnitude of the con-
gruency effect with additional experience in the tasks. These effects are 
clearest in reaction time but vary across participants and tasks. These 
effects are absent in the dataset of Robinson and Steyvers49, which 
also acquired hundreds to thousands of trials but across years. Thus, 
variability in temporal sampling may play a crucial role in observing 
these improvement effects. Notably, across all sessions and tasks, all 
participants retained congruency effects in their reaction time meas-
ures despite the presence of these improvement effects.

Extended Data Figs. 4 and 5 show that no strong signs of perfor-
mance deterioration across and within sessions are observed in our 
dataset, although a small level of performance degradation within 
sessions was observed in the Stroop task. Together, these findings sug-
gest that collecting extensive amounts can be feasible under certain 
conditions, which we will elaborate on in the Discussion.

Precise congruency effects need more than 1,000 trials
Next, we asked how many trials are needed to get precise estimates of 
the congruency effect within individuals. We assessed the precision of 
individual-level measures by systematically increasing the number of 
trials and identifying the point at which estimates of within-participant 
variability in the congruency effect begin to stabilize near zero. This 
stabilization point approximates the point at which additional trials 
yield diminishing returns relative to the effort required to collect them. 
Note that the exact level of precision needed will depend on particular 
questions and applications. Although we focus on recommendations 
based on the largest improvements in reliability, we provide the full sta-
bility curves in the Article for readers interested in other applications.

We utilized two methods that assessed the within-participant vari-
ability, as our focus was on achieving precise individual-level measures. 
As we will demonstrate in the next section, this stabilization point based 
on within-participant variability consistently aligns with stabilization 
estimates derived from between-participant variability.

In our primary method, we randomly split in half each participant’s 
data into two sets, a reference set and a test set (trial data were split in 
contiguous segments; Methods). The reference set was used as our best 
estimate score based on a large amount of independent data (~3,000 
trials). We then extracted increasingly large subsets of data from the 
test set. We compared congruency effects between the accumulating 
test set samples and the reference set, and the stabilization point was 
established as the approximate location where the absolute difference 
flattens out (this may not ever reach zero, as some level of error due 
to, for example, state-based variability, may remain). This approach 
provides an estimate of the precision of the congruency effect for each 
individual by comparing it with the best measure available. Note that 
before running this analysis, we removed the improvement effects 
(decreasing congruency effects over time; Extended Data Fig. 3) using 
linear regression (see Extended Data Fig. 6 for before-and-after linear 
regression; results were similar even when the improvement effects 
were retained in the data as shown in Supplementary Fig. 5).

Our results show that more than 1,000 trials are needed for the test 
samples to be comparable to the reference set (Fig. 3). At 1,000 trials, 
the test samples show an average absolute difference of 4.04 ms per 
individual for flanker (9.18% of the grand mean of 44 ms), 5.43 ms for 
prime–probe (7.43% of the grand mean of 74 ms) and 9 ms for Stroop 
task (15.52% of the grand mean of 58 ms). Although smaller, additional 
gains in precision are seen beyond 1,000 trials as well.

These results are replicable using our second method for assess-
ing within-participant reliability, which calculates the width of the 95% 
confidence interval for the mean congruency effect with bootstrap-
ping at varying numbers of trials (Methods and Supplementary Fig. 5). 
The width of the confidence interval reflects within-participant vari-
ability in the congruency effect, and the stabilization point—where the 

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02198-2

width levels off—approximates the true within-participant variability. 
Correlation coefficients between the data from the two methods 
for each participant across each task are r ≥ 0.98, suggesting highly 
consistent results.

The number of trials needed to achieve these relatively precise 
congruency effects (>1,000) exceeds what is typically collected in 
most standard study designs. In experimental research, which com-
pares group averages of a sample size of about 30, it is typical for  
500–800 trials to be administered per participant53–55. For 
cross-participant correlational research, the required sample size is 
often much larger (that is, hundreds of participants), which typically 
comes at the cost of the number of trials per participant42,56. For exam-
ple, 96 trials were collected per person in Eisenberg et al.’s36 Stroop 
task, and 40 trials in the NIH Toolbox Flanker Inhibitory Control and 
Attention Test57.

With 96 trials, the 95% confidence interval, averaged across par-
ticipants, is 60 ms in the flanker congruency effect (see dashed–dot-
ted lines in Supplementary Fig. 5). With 40 trials, the 95% confidence 
interval is 87 ms (dashed lines). These levels of error are substan-
tial, given that the average flanker congruency effect is 44 ms with 
a between-participant standard deviation of approximately 17 ms. 
Even larger errors are seen with these trial numbers in the prime–probe 
and Stroop tasks.

Repeated measures reduce variability in congruency estimates
We have shown that repeated measures can successfully reduce 
within-participant error. The next important question is how repeated 
measures affect between-participant variability. If testing more tri-
als continuously reduces between-participant variability, making 
measures highly comparable, extensive testing would have limited 
benefits for improving the reliability of the congruency effect. Alter-
natively, if it helps to reveal stable between-participant variability once 
within-participant error has been minimized, then achieving high levels 
of reliability would be possible with extensive testing.

To test these predictions, we turned to a publicly available dataset 
from Robinson and Steyvers49, which includes online flanker task data 
from 495 participants. The number of trials per participant ranges from 
491 to 5,939 trials. For the purposes of this study, we limited analyses to 

participants with good accuracy rates (>70% on average, no sessions 
with 0% accuracy) and more than 2,500 correctly responded trials 
(Methods). This left a total of 185 participants for analysis.

First, we replicated the findings from the EPIC dataset, showing 
that in this larger sample, within-participant variability decreases with 
greater numbers of trials, plateauing around 1,000 trials (Fig. 4a,c). 
This shows that the EPIC results are robust, even when tested in a larger 
and more heterogeneous group.

Importantly, as the within-participant error decreases, so does the 
between-participant standard deviation (Fig. 4b,d). Consistent with 
the trajectory of within-participant variability, between-participant 
standard deviation stabilizes after acquiring about 1,000 trials. These 
findings extend our estimation of the approximate number of trials 
needed to achieve a high level of individual precision in the assessment 
of reliable individual differences.

High trial sampling stabilizes between-participant variability
The association between within- and between-participant variability 
may be driven by large within-participant error, which can confound 
between-participant variability estimates33,39,58,59, as expected from 
statistical analysis (Supplementary Equation 1). This contamination 
arises because we split the analysis of multilevel data into two steps 
when calculating the congruency effect: we first calculate the mean 
reaction time for each participant and then calculate the difference 
in these mean reaction time for congruent and incongruent trials. 
Critically, in the second step, we treat these measures as fixed and 
known, without systematically accounting for the imprecision in their 
estimates. As this imprecision is unaccounted for, between-participant 
variability is contaminated by within-participant variability (see also 
refs. 33,58).

To provide improved intuition for this relationship, we created 
two simulated models with cases of small versus large trial sampling 
(Fig. 5). With small trial sampling, between-participant standard devia-
tion would decrease substantially as trial numbers increase, due to 
the high influence of within-participant variability. In contrast, when 
trial numbers are high (and, therefore, within-participant variability 
is relatively low), we hypothesized that between-participant standard 
deviation would remain stable, revealing its true estimate.
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Fig. 3 | Precision of congruency effect estimates with different trial numbers. 
This figure shows the number of trials required to get stable congruency effect 
estimates, shown as reaction time stability curves for each participant across 
the three tasks. The absolute difference between the reference set and the 
accumulating test set sample is plotted as a function of number of trials (on a 
logarithmic scale). We defined the stabilization point as the point where the 
difference appears to level off, indicating that additional trials provide relatively 
smaller benefits (see ‘Within-participant precision of the congruency effect’ 
section in the Methods for details on the analysis). We estimate this number as 
1,000 trials. The curves are comparable across participants and tasks, but the 
precision is highest for the flanker task and the lowest for the Stroop task, given 
the same number of trials. This suggests that, while more sampling improves 
precision until at least 1,000 trials, the extent to which precision is improved 

will be affected by particulars of the dataset and the individual participant. The 
two vertical lines mark the number of trials collected in the NIH Toolbox Flanker 
Inhibitory Control and Attention test (dashed line at 40 trials) and Eisenberg et 
al.’s36 Stroop task (dashed–dotted line at 96 trials). We also plotted the absolute 
difference as a percentage of an individual's grand mean to illustrate how small 
the within-participant variability can be (for example, 20% of the grand mean; 
Supplementary Fig. 6). In addition, similar stability curves for accuracy are 
shown in Supplementary Fig. 7, and for IES in Supplementary Fig. 8. Our Stroop 
task includes a neutral condition, allowing us to separate congruency effects for 
the two conditions (facilitation: neutral-congruent; interference: incongruent-
neutral); the stability curves for the facilitation effect and the interference effect 
are shown in Supplementary Fig. 9. Finally, see Supplementary Fig. 10, which plots 
the correlation between the reference set and the test set across participants.
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The simulation results in Fig. 5 show that Model 1 replicates 
key patterns observed in the empirical data of Robinson and 
Steyvers49 (Fig. 4): When within-participant error is high with 
few trials, between-participant variability estimates are both  
biased and imprecise. Here, bias refers to a systematic deviation 
between the true and estimated parameter values, while impreci-
sion reflects variability due to random error. Given that the stabiliz-
ing point of the between-participant standard deviation (~29 ms in  
Model 2) is our best true estimate, one can observe that the estimates 
under Model 1 are biased (inflated above 60 ms) and imprecise (as 
indicated by the large shaded error bars). With more trials, as the  
width of the 95% confidence interval for the congruency effect 
decreases within participants, the between-participant standard devi-
ation decreases. By contrast, Model 2 features small within-participant 
error due to large trial sampling, and the between-participant 
standard deviation shows stable estimates. This suggests that,  
once within-participant error is reduced with large trial numbers, 
more accurate and stable between-participant variability can  
be revealed.

Besides collecting more trials, another effective way to cor-
rect for bias is to account for trial-level variability in the estimation 
of between-participant variability, as specified in Supplementary 
Equation 1 (refs. 33,39). This method (Extended Data Fig. 7) effectively 
corrects the inflation of between-participant variability, but impreci-
sion of the corrected value can still be high (consistent with Rouder 
et al.’s39 findings), probably due to imprecision in accurately estimating 
within-participant variance with small numbers of trials. Therefore, 
both unbiased and precise estimates of between-participant varia-
tion likely require at least an intermediate number of trials, even when 
corrected. However, this approach is helpful to apply in situations 
where group-level statistics are of interest but cannot provide precise 
estimates for an individual.

Within-participant error biases between-participant estimates
To further highlight the importance of minimizing within-participant 
error, we conducted additional simulations to examine how 
within-participant variability and sample size influence estimates of 
between-participant variability. This time we directly varied the size of 
within-participant variability, using parameters obtained from Hedge 
et al.’s32 flanker task data. We set the true between-participant stand-
ard deviation to a fixed value and simulated participants with varying 
levels of within-participant standard deviation. We then measured the 
observed (‘apparent’) between-participant standard deviation for each 
within-participant standard deviation.

Figure 6a demonstrates that, although the true between- 
participant standard deviation is unchanged (18 ms), when 
within-participant standard deviation is higher than 9 ms (50% 
of the true between-participant standard deviation), the appar-
ent between-participant standard deviation becomes both biased 
and imprecise. We replicated these results with different levels of 
between-participant standard deviation (Fig. 6b), and again, when 
the within-participant standard deviation is higher than about half 
of the true between-participant standard deviation, the apparent 
between-participant standard deviation starts to grow with higher 
error. Note that this growth is more prominent for smaller true 
between-participant standard deviations, indicating that measures 
with smaller true individual differences would be more severely 
affected by large within-participant errors. These results are consistent 
with Supplementary Equation 1: as the estimated between-participant 
variance is the sum of true between-participant variance and impreci-
sion due to within-participant error, the results will be most affected 
by large imprecision when the true between-participant variance is 
relatively small.

In many cases, larger samples can compensate for the low reliabil-
ity of individual data. However, increasing the number of participants 
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Fig. 4 | Repeated measures reduce both within- and between-participant 
variability. We used flanker task data from the work of Robinson and Steyvers49, 
collected online through Lumosity. a, Stability curves for within-participant 
estimates of the congruency effect reaction time, based on the width of the 
95% confidence interval of the mean congruency effect, estimated using 
bootstrapping (method 2). Method 1 is our preferred estimation method to 
plot the stability of congruency effects, as results are more interpretable in 
terms of the average performance outcomes one is likely to get across repeated 
data. However, it can be effectively implemented only with sufficiently large 
amounts of data to set the gold standard. Therefore, we used method 2 for 
this dataset. Each grey-shaded line is a single participant, and the overlaid red 
line is the median of the group. As in the EPIC dataset, within-participant error 

decreases with accumulating trials in the larger sample dataset of Robinson and 
Steyvers. Note that, overall, both within- and between-participant variability 
are higher in this dataset than in EPIC, perhaps due to online data collection, 
more heterogeneous group and/or wider age range; see the Supplementary 
Methods for details on the dataset. b, Between-participant standard deviation 
of the congruency effect reaction time plotted as a function of number of trials. 
Between-participant variability also decreases with trial numbers and reaches a 
stable point at ~1,000 trials. c, Stability curves for within-participant estimates 
of congruency effect accuracy. d, Between-participant standard deviation of 
congruency effect accuracy. The accuracy results are consistent with reaction 
time data in that both within- and between-participant variability decrease and 
stabilize at ~1,000 trials.
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will not rectify bias in between-participant standard deviation. 
Figure 6c shows a simulation in which the number of simulated partici-
pants varies while the between-participant standard deviation is held 
constant. Although the error bars decrease with larger sample sizes, 
the overall pattern remains consistent, indicating that the inflation of 
between-participant variability cannot be resolved by increasing the 

number of participants. The within-participant variability itself needs 
to be reduced, such as through repeated measures. This fact is also 
apparent from Supplementary Equation 1, given that the number of 
participants does not affect between-participant variance.

This series of simulations demonstrates that, when within- 
participant variability is not appropriately addressed, measures of 
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Fig. 5 | Between- and within-participant variability based on trial sampling. 
This figure shows the comparison of the two models that differ in the number of 
trials sampled from within-participant distributions to get the mean congruency 
effect: Model 1, with small trial sampling, sampled 40 trials per draw, while Model 
2, with large trial sampling, sampled 1,000 trials per draw. These trial numbers 
were selected to match the NIH Toolbox Flanker Inhibitory Control and Attention 
Test (40 trials) and our estimate of the number of trials needed for stable 
congruency effects (1,000 trials). Furthermore, to examine how within- and 
between-participant variability change with increasing trials, the number of trials 
sampled was systematically increased from each starting point. We simulated 
185 participants, whose parameters for within-participant distributions (mean, 

standard deviation, skewness and kurtosis) were based on the 185 participants 
from the work of Robinson and Steyvers49 shown in Fig. 4 (see the Methods for 
more details on the simulations). a,c, The width of 95% confidence interval of the 
mean congruency effect across the number of trials (method 2). One grey line 
corresponds to one simulated participant, and the overlaid red line is the group 
median. b,d, The between-participant standard deviation of congruency effect 
plotted in a blue line and its 95% confidence interval as shaded error bars. Both 
within- and between-participant variability decrease with more trials in the small 
trial sampling and large error variance (Model 1) but are relatively unaffected by 
the number of trials in the large trial sampling and small error variance (Model 2), 
supporting that 1,000 trials can provide stable estimates.
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Fig. 6 | Within-participant variability inflates between-participant 
differences. a, A simulation of apparent between-participant standard deviation 
across different levels of within-participant standard deviation (2.4, 3.3, 4.7, 
6.6, 9.3, 13.2, 18.8 and 26.3 ms; these values correspond to within-participant 
variability when trial number systematically varies from 6,400 to 50 in our 
dataset). The true between-participant standard deviation was set to a fixed 
value of 18 ms (marked by dashed red line) as in Hedge et al.’s32 dataset. The 
simulation was repeated 1,000 times, and 100 participants were simulated in 
each simulation (see the Methods for details). The mean of 1,000 simulations is 
plotted with its 95% confidence interval as error bars. While the true between-
participant standard deviation is unchanged, its apparent value increases with 
the within-participant standard deviation, indicating that large  

within-participant error inflates measures of between-participant differences. 
This contamination is most evident once the within-participant standard 
deviation is higher than ~9 ms, half of the true between-participant standard 
deviation. b, The simulation from a was repeated with varying levels of true 
between-participant standard deviation (5, 10, 20, 30, 40, 50 and 60 ms shown 
in different colour lines on the plot). Note that the smaller the true between-
participant standard deviation, the more it is affected by increases in within-
participant standard deviation. c, The simulation from a was then repeated  
with varying numbers of simulated participants (50, 100, 200, 300, 400, 500  
and 1,000). Critically, increasing the sample size does not rectify large  
within-participant variance contaminating apparent between-participant 
standard deviation.
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between-participant variability will be incorrect39,58. Many past studies 
have measured inhibitory control using a small number of trials, likely 
resulting in within-participant variability that exceeds the expected 
between-participant variability. As a consequence, estimates of 
between-participant variability in the literature are likely to be often 
inflated and imprecise.

Trial counts matter more than participants in reliability
Given that increasing the number of participants can have limited 
benefits for accurately estimating between-participant variability, we 
compared the effects of increasing the number of participants versus 
the number of trials on cross-participant reliability, measured with 
intraclass correlation (ICC). This is an important consideration when 
determining the sample size of a study with limited resources, espe-
cially given recent examinations of the trade-off between participant 
numbers and testing duration in correlational studies56. Here, we calcu-
lated the correlation coefficient of the rank orders between a simulated 
participant’s true mean congruency effect and the apparent mean 
across varying numbers of participants and trials using Hedge et al.’s32 
flanker task data (Fig. 7). Replicating and extending the findings from 
Fig. 6c, we show that collecting more trials—rather than increasing the 
number of participants—leads to excellent cross-participant reliability.

In this simulation, increasing the number of participants is most 
effective in improving reliability when the sample size is small (<200 
participants). The effect becomes negligible when the number of trials 
is beyond 800. For example, the ICC is 0.87 when the number of trials is 
1,600 and the number of participants is 500, and it remains unchanged 
even when participant numbers increase to 4,000. Even with thou-
sands of participants, the ICC can be below 0.5 when individual-level 
estimates of the congruency effect are imprecise due to having trials 
as small as 50.

In contrast, increasing trials effectively improves the ICC. By 
increasing the number of trials, it is possible to achieve excellent reli-
ability in even relatively small samples—indeed, with sufficient trials 
(>1,000), even with 50 participants, the reliability is above 0.8. For 
example, with 3,200 trials and 50 participants, the ICC is 0.89. This 
contrasts with the case of having 4,000 participants with only 50 trials 
each, where the ICC is 0.38.

Consistent with Fig. 6c, these simulation results demonstrate the 
importance of acquiring precise individual estimates by sufficient trial 
sampling rather than participant sampling. These results convey a 
critical message regarding the choice between expanding the number 
of participants versus the number of trials when resources are limited, 
especially when examining measures with high within-participant 
variability such as inhibitory control. We expand on this further in the 
Discussion.

Advanced models benefit from more within-participant data
We have demonstrated the necessity of repeated measures to obtain 
precise individual estimates and accurately assess individual differ-
ences in classic congruency effect measures. In our final analyses, 
we explored the implications of sampling on alternative methods to 
analyse inhibitory control in congruency effect paradigms. Advanced 
modelling approaches, such as drift–diffusion modelling36,46,60, factor 
analysis47 and Bayesian hierarchical modelling33, have been proposed 
to improve reliability or investigate unobserved variables in task per-
formance. These methods are often implemented with fewer than a 
hundred trials36,61. Building on our findings regarding the critical role 
of sufficient sampling, we evaluated how varying trial numbers affect 
the robustness of these advanced modelling approaches.

We first show results of EZ-diffusion modelling62 using flanker task 
data of Robinson and Steyvers49. We calculated the split-half reliability 
of the modelling parameters across different numbers of trials.

Figure 8 demonstrates that increasing the number of trials 
improves the ICC for both the congruency effect and the modelling 
parameters. Specifically, the ICC for the modelling parameters mir-
rors changes observed in the ICC for reaction time and accuracy of the 
congruency effect. The ICC for the drift rate increases systematically 
with a higher number of trials, requiring at least 800 trials to reach 
an ICC of 0.8. In most cases, the ICC for the drift rate does not exceed 
that of reaction time or accuracy. Therefore, the modelling results 
are expected to achieve high reliability once congruency effects are 
measured with high precision, such as with sufficient sampling. We 
also calculated the bootstrapped 95% confidence interval for the ICC of 
the modelling parameters. Extended Data Fig. 8 shows that, as the ICC 
improves with more trials, its precision also increases, as indicated by 
the narrowing of the error bars. We replicated this pattern using Hedge 
et al.’s32 data (Extended Data Fig. 8) and a simulation of a larger number 
of trials (up to 3,200 trials; Supplementary Fig. 12).

In our confirmatory factor analysis (CFA; Extended Data Fig. 9), 
we similarly observed that the reliability of the modelling outcomes is 
constrained by the reliability of the original data. We simulated three 
congruency tasks data using parameters from Hedge et al.’s32 flanker 
and Stroop tasks, as well as the EPIC prime–probe task, and ran CFA 
assuming a single shared latent factor. We examined the reliability of 
the factor scores across varying trial numbers. The results show that 
the reliability improves with more trials, and notably, cross-task cor-
relation plays an important role: if cross-task correlation is weak, even 
with sufficient sampling, the reliability of the factor score can remain 
low. Conversely, with high cross-task correlation, the reliability of the 
factor score exceeds that of the individual task congruency effects. 
Thus, precise individual measures can influence CFA results, particu-
larly in cases where cross-task correlation is modest. This finding is not 
entirely surprising, given that our CFA model assumed a single factor 
(based on prior P-technique factor analysis in the EPIC dataset, which 
suggested that all participants had at least one estimable latent factor 
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on simulated data. A simulated participant’s true mean congruency effect is 
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key manipulations were the number of participants drawn from the between-
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and the number of trials drawn from the within-participant distribution (50, 
100, 200, 400, 800, 1,600 and 3,200) to examine whether increasing either the 
number of participants or the number of trials improves the correlation between 
the true mean and the apparent mean. Increasing the number of trials alone 
results in excellent reliability above r = 0.8, whereas increasing the number of 
participants has relatively more limited effects.
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that the three tasks load on). However, this dependence emphasizes the 
importance of selecting appropriate priors for factor-level structure 
to ensure reliable factor analysis results.

Finally, we compared frequentist non-hierarchical and Bayesian 
hierarchical methods of analysing the data from the work of Rob-
inson and Steyvers49 (Extended Data Fig. 10). Bayesian hierarchical 
models correct for measurement imprecision in conditions of low 
trial-numbers by shrinking unstable parameter estimates towards the 
group mean. This has the effect of downwardly correcting the error 
of between-participant variance estimates33. Our own simulations 
demonstrate that a Bayesian hierarchical approach provides large 
benefits only when the number of trials is small and within-participant 
variance is large. In other words, if one has to accept some degree of 
imprecision due to resource constraints and a small dataset, then a 
Bayesian hierarchical approach will provide less imprecision in the 
parameter estimates than a non-hierarchical approach. However, both 
approaches require a similar number of trials to obtain parameter 
estimates precise enough to produce mean absolute differences in the 
range of 4–9 ms from the true values. Thus, while alternative analysis 
strategies will probably be useful for improving inference in cases 
with high within-participant noise, these strategies are themselves 
improved by having more data. Benchmark datasets, such as EPIC, can 
help to establish better priors for improving implementations of these 
analysis and guidelines for the number of trials necessary to obtain 
different levels of precision.

Discussion
We have empirically quantified the number of trials necessary to 
obtain precise estimates of the congruency effect. We collected a 
dataset with more than 5,000 trials for each of our 9 participants in 
4 different tasks, 3 of which probed the congruency effect. Using this 
dataset, we demonstrated that within-participant variability of the 
congruency effect can be significantly reduced through extended 
sampling, with gains plateauing around 1,000 trials (500 trials per 
experimental condition). Our work complements prior findings from 
simulations based on more limited empirical examinations39,63,64 and 
provides concrete estimates of the trial numbers needed for different 
levels of reliability.

We replicated and expanded our findings with two additional 
public datasets32,49, showing that within-participant variability is of 
central import in the comparison of inhibitory control across people, 
as high levels of within-participant error systematically contaminate 
estimates of between-participant differences. This error cannot be 
resolved by increasing participant numbers and persists in alternative 
analysis methods, including drift–diffusion modelling, factor analysis 
and Bayesian hierarchical modelling.

Jointly, these results suggest that additional attention to 
within-participant variability is warranted in the study of inhibitory 
control for both basic research and clinical applications. Although here 
we focused on the congruency effect, our findings on the contamina-
tion between within- and between-participant variability and how the 
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Fig. 8 | Reliability of EZ-diffusion modelling across increasing trial numbers. 
We used 185 participants from the dataset of Robinson and Steyvers49. As 
EZ-diffusion modelling requires inputting both reaction time and accuracy62, 
we compared the split-half reliability of the modelling parameters (drift rate, 
boundary separation and non-decision time) to the congruency effect reaction 
time and accuracy. All results are difference scores between congruent and 
incongruent trials; for accuracy, drift rate and boundary separation, incongruent 
trials were subtracted from congruent trials. For the rest, congruent trials were 

subtracted from incongruent trials. We systematically increased the number of 
trials (50, 100, 200, 400 and 800) and calculated the cross-participant reliability 
with ICC. The results show that the reliability of the drift rate improves with more 
trials, but it seems to be limited by the extent to which the reliability improves 
for reaction time or accuracy. See Extended Data Fig. 8 for the same plot but 
using Hedge et al.’s32 data and Supplementary Fig. 12 for simulation results with 
extended sampling.
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number of trials reduces bias and imprecision in between-participant 
variance are likely to apply to other tasks and measures.

We share our EPIC dataset as a benchmark resource for the 
investigation of inhibitory control. The dataset can serve as a tool to 
understand sources of variability in inhibitory control and to quantify 
changes in task performance over time. Our dataset can also provide 
means to examine relationships across different task measures and 
benchmark methods for analysing congruency effect tasks. These 
ideas are explored in more detail below.

Inhibitory control estimates can be precise
As laboratory paradigms to investigate inhibitory control have been 
scrutinized for having low reliability32, several alternative approaches 
have been suggested. Some have proposed moving away from differ-
ence score metrics that contrast trial conditions31,65–68. However, this 
modification can alter the interpretation of the congruency effect, 
as non-subtracted metrics can be influenced by other aspects of pro-
cessing beyond the intended comparison (for example, see Extended 
Data Fig. 2). Others have proposed improving task designs to increase 
control demands or arousal, for example, by combining different con-
gruency tasks or using gamification45. Utilizing smartphones to access 
a broader population44 or selecting high conflict trials69 have also been 
suggested. The use of hierarchical models has been particularly rec-
ommended for their ability to separately model trial noise to better 
estimate true between-participant variability33,39,48,63,64,70.

Alongside these approaches, our results suggest that large trial 
numbers are beneficial for more precisely estimating both within- and 
between-participant variability. Several studies have previously noted 
that collecting more trials would give better estimates of the congru-
ency effects39,44,64. For example, Rouder and colleagues39 reviewed 
published studies on the typical ratios of between- to within-participant 
variability of the congruency effect and noted that, given the small 
ratios, most studies collect too few trials. While there are concerns 
that more testing could introduce systematic variability due to fatigue 
or boredom30, our study demonstrates with empirical evidence that 
approximately 500 trials per condition yield precise individual-level 
estimates, with relatively small influences from performance impair-
ment over time.

Indeed, using our EPIC dataset, we demonstrate the efficacy of 
precision approaches in improving reliability even in alternative model-
ling approaches. These approaches are particularly effective when the 
proportion of error variance to total variance is large (or signal-to-noise 
ratio is low71,72). These measures from our extensive dataset can serve 
as gold-standard empirical estimates of congruency effects within 
individuals to benchmark the effectiveness of various methods to 
improve reliability in future studies.

EPIC, a dataset for inhibitory control research
Repeated testing enables the measurement of other sources of 
within-participant variability, such as practice effects. All participants 
showed congruency effects throughout the duration of data collection, 
but decreases in the magnitude were observed with additional experi-
ence performing the tasks in reaction time data (for prior studies also 
reporting similar effects, see ref. 73–75). These performance improve-
ment effects were absent in the data from the work of Robinson and 
Steyvers49. Whereas their data were collected over the span of years, 
our participants performed each task twice a week for 9 weeks. Accord-
ingly, we speculate that the length of interval between sessions may 
play a critical role in observing these effects.

One future avenue of interest is to investigate the properties of 
these temporal effects and how they vary across tasks, measures and 
individuals. Performance improvement effects were most prominent 
in the flanker task and least so in the Stroop task, which had the small-
est and largest within-participant variability, respectively, among 
the three tasks (Supplementary Fig. 5). Participants with the smallest 

within-participant variability also demonstrated the most prominent 
improvement effects across all three tasks (for example, EPIC 03 and 
07). Note that EPIC 03 also showed overall performance improvements, 
as reaction time was shorter and accuracy was higher in later sessions 
(Extended Data Fig. 4). Accordingly, it may be that participants with 
better task engagement, reflected in smaller measurement error, are 
more likely to acquire these effects. This hypothesis warrants further 
investigation in future studies.

Examining other sources of within-participant changes across and 
within sessions related to repeated testing revealed no critical signs of 
performance deterioration in our dataset. However, we observed some 
variability across sessions, with the extent of variability differing by 
task and participant. Small effects of fatigue were also observed in the 
Stroop task over the 1 h of testing. Hence, using our dataset to explore 
day-to-day and within-session variation (for example, through slid-
ing window analyses) could offer valuable insights into the nature and 
sources of variability in inhibitory control. For example, if the congruency 
effect remains relatively stable within an individual (not exceeding vari-
ation expected from sampling variability), this may suggest that it has 
relatively trait-like characteristics. Variation over time within a session 
or across sessions, conversely, could be linked to differences in states, 
arousal, or other individual characteristics. Longer-term dynamics may 
also be of interest for tracking longitudinal changes in inhibitory control, 
particularly in relation to developmental and degenerative conditions. 
Our dataset should serve as a valuable step to initiate this exploration.

Precise estimates are needed for individual differences
The precision of individual-level data should not be compromised 
even in research focused on individual differences. We demonstrated 
through simulations that within-participant and between-participant 
variability are linked. This leads large within-participant variability to 
systematically contaminate estimates of individual differences. Our 
simulation results are consistent with past findings33,39 and converge 
with the expectations from statistical equations of between-participant 
variance (Supplementary Equation 1).

Although we examined these effects in the domain of behavioural 
measures of inhibitory control, they are likely to extend broadly to 
other behavioural and neural measures. Indeed, the properties of our 
relatively simple simulation (Fig. 6) and mathematical expectations 
from statistical inference (Supplementary Equation 1) suggest that 
estimates of between-participant variability will be contaminated 
in any situation where within-participant variability is high and can-
not be recovered by simply sampling more participants. Thus, these 
results call for enhanced attention to the precision of individual-level 
estimates across a range of experimental paradigms, particularly in 
large-scale studies designed to understand individual variation.

Clinical applications, in particular, are likely to be impacted 
by these findings. Deficits in inhibitory control have been linked to 
ageing76, psychiatric disorders77,78 and maladaptive behaviours in daily 
life, such as suicide79 and drug addiction80. However, research in these 
areas often yields inconsistent findings. Some studies have found 
non-significant differences in inhibitory control between psychiatric 
groups and healthy controls81 or poor correlations between laboratory 
tasks and self-reported surveys that are defined to measure similar 
constructs of inhibitory control82. As a result, one might conclude 
from these studies that older adults or psychiatric patients do not have 
deficits in inhibitory control83 or that the laboratory tasks are not valid 
measures of real-world inhibitory control81,82.

However, instead, it could be that inhibitory control measures 
were imprecise at the level of individual participants. Study designs for 
examining within-participant effects of experimental manipulations 
have come to prominence because of their ability to measure robust 
group-level effects, including the congruency effect21,31. This effect 
was designed to be robust on average across participants but not at 
the level of individuals. Indeed, many past studies have acquired about 
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a hundred trials or less per participant in an effort to collect a large 
group sample (for example, refs. 36,76). The large amount of error 
in individual estimates of inhibitory control with these trial numbers 
probably hampers our ability to interpret these measures and connect 
them with other constructs, such as measures of psychopathology.

Having precise behavioural measures is also critical for linking 
them with neural characteristics. Substantial effort and resources 
have been dedicated to understanding how interindividual variations 
in behavioural phenotypes are associated with individual differences 
in neural features through large consortium datasets17,84,85. However, 
studies based on the ABCD and HCP datasets suggest that brain–
behaviour links are weak86,87. Supporting this, Kong and colleagues88 
demonstrated that brain-based prediction accuracy for flanker task 
performance was particularly low among the 58 behavioural meas-
ures in the HCP dataset. Gell and colleagues’41 simulation study helps 
to explain this, showing that predicting behavioural measures with 
low reliability from brain features results in extremely low prediction 
accuracy. Given our findings, poor predictive accuracy is not surprising 
for datasets and consortia based on direct or modified versions of the 
NIH Toolbox, which typically includes only 40 trials per participant. 
Therefore, highly reliable individual measures, such as through suf-
ficient trial sampling, are likely to improve predictions in future efforts 
to connect brain and behavioural measures of inhibitory control89,90.

Precise estimates advance executive function research
Executive functions are a set of cognitive processes that regulate 
thoughts and behaviours to achieve goals, with inhibition being one 
of the key components. Extensive prior research has defined, charac-
terized and classified executive functions to demonstrate their central 
role to function adaptively in daily life3,38,91. However, a crucial question 
remaining is the unity and diversity of executive functions: whether con-
trol is a unified concept, and whether different tasks measure similar 
or related control functions38. Some have argued that inhibition is not 
a coherent theoretical entity and that different inhibitory control tasks 
may tap on different constructs33. Others have argued that inhibitory 
control reflects a unitary phenomenon with evidence that a shared 
latent inhibitory control factor exists across tasks38,92. Factor analysis 
is a tool for removing error variance and examining underlying shared 
constructs93. Our simulation results showed that factor analysis is also 
affected by trial variability, highlighting the need for sufficient testing 
to ensure reliable modelling. Thus, obtaining robust individual-level 
measures through sufficient sampling is important for future studies 
aimed at improving understanding of executive functions and their 
relationships to various measures.

Collecting more trials versus more participants
Despite prior attention to reliability30,32,41,58, collecting small numbers 
of trials per participant remains common practice, as promoted by 
tools such as the NIH Toolbox and their use in large consortium datasets 
such as the ABCD and HCP. In applications related to brain–behaviour 
associations, substantial attention has been paid to issues of partici-
pant number in improving reliability87, but relatively less to issues of 
within-participant data collection89,90.

Our simulation results indicate that simply having more partici-
pants when their individual-level estimates are biased will continue 
contaminating estimates of true variation across individuals. Large 
consortium studies often collect fewer than a hundred trials from hun-
dreds or thousands of participants (for example, ref. 94). Our results 
suggest that this approach probably leads to erroneous estimates of 
individual differences, especially for measures that require detection 
of small differences. Rather, having sufficient trials (~1,000 trials) 
provides precise individual estimates and reveals true individual differ-
ences even without necessitating hundreds of participants. Of course, 
large participant samples are still necessary to represent the population 
and to generate inferences about individual difference variables95,96. 

However, our findings imply that collecting data from large samples 
at the expense of individual precision may be a misleading strategy, 
leading to systematically incorrect estimates of individual variability.

Deciding on the optimal combinations of trial size and number 
of participants is a challenging enterprise when resources are limited. 
However, our results suggest that increasing participant numbers at 
the expense of very low trial numbers per participant can have concern-
ing consequences on measurement. To be concrete, the simulation 
in Fig. 7 shows that having 50 participants with 800 trials achieves a 
similar ICC (0.73) to having 1,000 (or 4,000) participants with 400 
trials. Thus, assuming 1,000 trials are collected per hour, one can 
achieve similar reliability with 40 h of testing compared with 400 h. 
More dramatically, one can achieve two times the ICC by going from 
4,000 participants with 40 trials (200 h of testing) to 50 participants 
with 800 trials (40 h of testing).

Guidelines for precise estimates of inhibitory control
We have shown that the stable congruency effect estimates emerge 
with more than 1,000 trials. One might ask whether it is feasible to 
collect more than 1,000 trials per participant. It took less than an hour 
to collect 1,000 trials for our study.

Additional time per participant can be a constraint for studies that 
require a large sample of participants or multiple tasks. Moreover, for 
neuronal measures, such as functional magnetic resonance imaging, 
additional design constraints may exist that can lengthen the dura-
tion of each trial, such as allowing for sufficient intertrial intervals to 
return to baseline. Another critical problem is recruitment: it may be 
easy to recruit a large number of participants for studies taking only a 
few minutes, while it could be more difficult to recruit them for stud-
ies taking hours.

Despite these constraints, our findings demonstrate the impor-
tance of precise individual data. Imprecise individual estimates do not 
guarantee reliable examination of individual differences even with col-
lecting hundreds of participants. In this vein, several other approaches 
have also been suggested to improve congruency effect measurement, 
including drift–diffusion modelling46, factor analysis47 and Bayesian 
hierarchical modelling33. We examined the role of trial numbers in 
each of these strategies and demonstrated that, in all cases, precision 
is improved with higher amounts of data per participant.

Therefore, while the precision approach of collecting large 
per-participant data represents more time on tasks than is currently 
carried out in many studies, we believe the added precision is worth 
the investment. This may lead researchers towards study designs with 
fewer tasks per participant in an effort to obtain more reliable estimates 
in the individual measures. Alternatively, researchers may seek to wed 
smaller, extensive sampling datasets with larger-scale studies97,98, for 
example, by using small datasets to improve priors in the analysis of 
noisier larger-scale datasets90.

Conclusion
Using a dataset with extensive per-participant data, we have demon-
strated that it is possible to obtain highly precise congruency effects. 
This dataset provides a valuable resource for testing and validating 
methods to examine inhibitory control. Our findings, supported by 
both empirical and simulation data, consistently highlight the impor-
tance of extended sampling in obtaining precise individual-level esti-
mates and reliable between-participant differences. These principles 
may extend beyond inhibitory control, with broad implications for 
improving the reliability of measures in both clinical and cognitive 
neuroscience research.

Methods
Overview and datasets
Our goal was to determine whether we could obtain highly precise 
individual estimates of inhibitory control with sufficient sampling. 
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Thus, we collected new data, which we term the EPIC dataset. This 
dataset includes extended amounts of data from 9 individuals who 
were tested on 4 inhibitory control tasks across 36 days (2 tasks per 
day; 18 days per task). Other daily measures were also collected, 
including sleepiness (Stanford Sleepiness Scale), sleep time, anxiety 
(State-Trait Anxiety Inventory), mood (Positive and Negative Affect 
Schedule), depression (Beck Depression Inventory), substance use 
and simple reaction time. We also measured the Big Five personality 
traits. We describe the dataset and measures in more detail below. We 
have made this dataset a public resource for the community to test a 
range of questions regarding inhibitory control, within-participant 
variation, practice and relationships across measures. For the pur-
poses of this study, we focused on the precision of the congruency 
effect measures of inhibitory control, based on three of the four 
inhibitory control tasks.

Our preliminary analyses focused on establishing the reliability of 
the congruency effect in the EPIC dataset under different conditions. 
We then replicated findings from two public datasets of 495 partici-
pants in a flanker task49 and of 112 participants in a flanker and Stroop 
task32. These datasets are from a larger sample of participants, although 
with more limited amounts of data per participant. These secondary 
datasets are described in more detail in the Supplementary Methods. 
We used these datasets to establish properties of between-participant 
variability relative to within-participant variability. We complemented 
our work on these three datasets with simulations, as described in 
more detail below.

EPIC dataset
Description. The EPIC dataset includes data from three congruency 
tasks: a flanker task, a prime–probe task and a Stroop task. These tasks 
measure the congruency effect in diverse ways, tapping differences 
in stimulus presentation, spatial and temporal adjacency of distrac-
tors to targets and loci of interference or control92,99,100. The flanker 
task instigates interference between a target and distractors in space, 
whereas the prime–probe task induces conflict in time between a prime 
(distractor) and a probe (target), which is why some consider this task 
to be a temporal flanker101). In the Stroop task, conflict arises when the 
target and the distractor are associated with different attributes of 
the same stimulus, requiring suppression of a prepotent response to 
the distractor. We also tested a go/no-go task, which measures rapid 
inhibition of motor execution, but did not include them in our analyses 
of investigating precise estimates of congruency effects (see Fig. 1, a 
visual abstract, for the description of the dataset). All data are avail-
able at https://osf.io/jk9nb/, and the experiment and analysis code are 
available via GitHub at https://github.com/GrattonLab/LeeSmith_EPIC.

Participants. Data were collected from nine healthy adults who were 
either members of the laboratory or students at Northwestern Univer-
sity (age mean 25 years, standard deviation 3.61 years; 5 females and 
4 males). The study was approved by the institutional review board 
of Northwestern University (STU00211073). All provided written 
informed consent to participate. Participants were compensated for 
each session and received a completion bonus upon completing all 36 
sessions. All had normal or corrected-to-normal vision. Participants 
were either tested in the laboratory or at home by taking the laboratory 
computer home. Data from one participant were removed due to an 
issue related to key release resulting in consecutive error trials in later 
sessions of the prime–probe and Stroop tasks (EPIC 09). The Article 
results are based on the remaining eight participants.

Apparatus. Participants were seated approximately 60 cm away from 
an LCD monitor. The screen was set to have a resolution of 1,440 × 900 
pixels and a refresh rate of 60 Hz. All experiments were programmed 
with MATLAB (www.mathworks.com) and Psychtoolbox (3.0.16). 
Responses were collected with a standard computer keyboard.

Data acquisition procedure. Participants each completed 36 ses-
sions with 4 sessions each week. In each session, participants per-
formed two of the four inhibitory control tasks (flanker, prime–probe, 
Stroop and go/no-go tasks), and the order was pseudorandomized 
and counterbalanced across participants. The order was miscollected 
for EPIC 10, so the data collection was incomplete for some tasks 
upon completing the 36th session; this participant completed two 
additional sessions to reach the same level of task completion. In the 
beginning of each session, participants completed a 5-min survey on 
Qualtrics, responding to questions about their mood, current emo-
tions and activities from the previous 24 h. The survey was followed 
by a simple reaction time task consisting of 25 trials per day. In this 
task, participants were asked to press the space bar upon seeing 
a white square appearing in the centre of the screen. The purpose 
was to measure reaction time for motor execution in response to a 
stimulus presentation. The data were not analysed but are released 
for interested users.

Task design and procedure
Flanker task. In each session, participants had 24 trials of practice, 
followed by 4 blocks with 100 trials per block of the main experiment. 
The task was to respond to the direction in which a central arrow points, 
while ignoring the arrows presented beside it, by pressing the left or 
right arrow key. Participants were instructed to respond as quickly 
and accurately as possible. Participants received feedback on every 
trial during the practice and only at the end of each block for the main 
experiment. Each trial started with the presentation of a white central 
fixation cross on a black background for 1,500 ms. This cross was fol-
lowed by a display of one target arrow in the centre and four flanker 
arrows, two placed on the left and the other two placed on the right of 
the target, all in white colour for 500 ms. The keyboard response was 
recorded from the onset of the stimulus until the end of the follow-
ing fixation cross period. A trial was considered congruent when the 
target arrow and the flanker arrows pointed in the same direction and 
incongruent when they pointed in opposite directions. The number of 
trials was equal between the two conditions. The final total number of 
trials collected per participants is 7,200.

Prime–probe task. The task design was based on Weissman et al.’s102 
study. Participants completed 24 trials of practice followed by 4 blocks 
of 96 trials in each session. The task was to ignore the preceding prime 
letter and respond to the probe letter. One of four letters was presented 
to which participants responded with their right hands (by pressing 
the key ‘1’ in response to letter ‘A’, ‘2’ to letter ‘B’, ‘3’ to letter ‘Y’, and ‘4’ to 
letter ‘Z’). Participants were instructed to respond as quickly and accu-
rately as possible. Participants received feedback on every trial during 
practice but only at the end of each block during the main experiment. 
A white fixation cross, presented in the centre of the black screen for 
1,067 ms, was followed by a white prime letter, which was presented 
for 200 ms. After a blank screen appeared for 33 ms, the probe letter, 
also in white, was presented for 200 ms. The keyboard response was 
recorded from the onset of the prime until the end of the following 
fixation cross period. Trials were considered congruent when the 
prime and the probe letters cued the same response and incongruent 
when they did not. Each trial type (letter combination) was presented 
an equal number of times; thus, there were an equal number of congru-
ent and incongruent trials. The final total number of trials collected 
per participants is 6,912.

Although not analysed in this Article, the prime–probe task was 
designed to examine how the congruency effect on the current trial is 
influenced by the congruency status of the previous trial103, without 
feature integration and contingency learning53,104. To avoid contin-
gency bias, the four letters were grouped into two sets (A and B; Y and 
Z) and stimulus response repetitions were prevented by switching 
between sets on each trial. The trial sequence was generated under the 
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constraint that each congruency sequence (cc, ci, ic and ii) occurred an 
equal number of times. However, because the first trial of each block 
does not have a preceding trial, one of the four sequences in each block 
occurred one trial less than the others. Across blocks, the sequences 
were balanced, with each of the four sequences serving as the less 
frequent sequence in one block.

Stroop task. Participants completed 25 practice trials, followed by 4 
blocks of 108 trials in each session. The task was a colour–word Stroop 
task, where participants responded to the colour of the word rather 
than its meaning. The colours were red (correspondingly pressing the 
key, ‘1’), yellow (‘2’), green (‘3’) or blue (‘4’). Participants responded with 
their right hands. Participants were instructed to respond as quickly 
and accurately as possible. Participants received feedback at every 
trial during practice and only at the end of each block during the main 
experiment. Every trial started with a white fixation cross presented 
for 1,000 ms on a black screen. A word followed this cross and was 
presented on the screen for 1,000 ms. On congruent trials, the ink 
colour and word meaning were the same, whereas on incongruent 
trials, they were different. One-third of the trials were neutral condi-
tions during which words irrelevant to colour (‘dog’, ‘bird’, ‘horse’ and 
‘cat) were presented. With the neutral condition, one can examine 
the facilitation effect (neutral-congruent) and the interference effect 
(incongruent-neutral). We chose to have the neutral condition only 
in the Stroop task because our primary focus was to maximize the 
likelihood of obtaining precise estimates in the common inhibitory 
control paradigms, specifically the congruency effect. The downside 
of including a neutral condition was having fewer trials per condi-
tion. The numbers of trials across the three experimental conditions 
were the same. The final number of trials collected per participant is 
7,776 (5,184 trials for calculating the congruency effect, excluding the 
neutral trials).

Go/no-go task. The task design is a modification of Redick et al.’s105 
paradigm. In each session, participants completed 20 trials of practice. 
The main experiment was composed of 4 blocks of 100 trials. The task 
was to respond by pressing the ‘x’ key with their right index finger when 
the letter ‘X’ appeared (go trials) and withhold responses when other 
letters (‘B’, ‘C’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘P’, ‘T’ or ‘Z’; no-go trials) appeared. Par-
ticipants were instructed to work as quickly and accurately as possible. 
Each trial started with a white fixation cross appearing at the centre of 
the black screen for 700 ms. This cross was followed by a white letter 
presented for 300 ms. Only 20% of the trials were no-go trials to induce 
prepotent response execution in the frequent go trials. The total num-
ber of trials collected per participant is 7,200 trials. This task was not 
analysed here, but the data are made available.

Data analyses
Preparing EPIC data for analyses. To calculate the mean congruency 
effect of 18 sessions and the grand mean of all sessions, we excluded 
outlier trials that deviated by more than three standard deviations from 
the mean within each experimental condition. We used the violinplot.m 
function in MATLAB to draw violin plots in Fig. 2 and Supplementary 
Figs. 1–4 (ref. 106). Before examining the stability of congruency effect 
results (for example, Fig. 3), we dropped the initial two blocks (200 tri-
als for flanker, 192 trials for prime–probe and 216 trials for Stroop) of 
the first session to reduce errors associated with learning the task rules 
and stimulus–response mappings. We also regressed out the improve-
ment effects in reaction time within each task (Extended Data Fig. 3); 
after plotting the mean congruency effect as a function of growing 
number of trials (by progressively adding half a block of trials), we fit 
a simple linear model (see Extended Data Fig. 6 for before-and-after 
linear regression). The residuals of this model were used for analyses. 
For completeness, we also plotted stability curves without regressing 
the improvement effects (Supplementary Fig. 5).

Within-participant precision of the congruency effect. We used two 
methods to measure the within-participant precision of congruency 
effect estimates. Method 1 served as the primary approach for datasets 
with a sufficient number of trials per participant, as it assesses replica-
bility in independent samples within a participant. For each participant, 
data were divided into small units (that is, half a block, ~50 consecutive 
trials per unit). Randomly, half of these units were assigned to a refer-
ence set, totalling 2,592–3,600 trials. This reference set provided the 
best estimate of the true congruency effect score for each participant. 
To determine the sampling size that gives a comparable estimate to this 
reference score, one unit from the rest half was randomly selected with 
replacement and progressively added to a test set sample. The absolute 
difference between the test set sample’s congruency effect and the 
reference set’s congruency effect was then calculated. This procedure 
was repeated until the test sample size was comparable to that of the 
reference set. We repeated this process 5,000 times with different 
splits of the participant’s data into reference and test samples. The final 
results plot the mean across these 5,000 repetitions.

Method 2 was the approach used in datasets with insufficient 
number of trials for test–retest comparisons and served to replicate 
the findings of method 1. In this method, each participant’s data were 
also divided into small units (~50 trials), which were randomly selected 
and added to a growing sample. At each step of adding a unit, the 
mean congruency effect of the growing sample was calculated. This 
procedure was repeated 5,000 times, producing 5,000 estimates of 
the mean. These data were then used to calculate the 95% confidence 
interval of the mean. The width of the confidence interval was used as an 
estimate of within-participant variability. The correlation coefficients 
between the two methods of estimating precision in the congruency 
effect for each participant for each task were r ≥ 0.98. Note that these 
same approaches were used for examining the within-participant 
reliability of reaction time (Fig. 3 and Supplementary Fig. 5), accuracy 
(Supplementary Fig. 7) and IES (Supplementary Fig. 8). A subset of 
these approaches was used to replicate the findings in our secondary 
datasets (Fig. 4).

In addition to the small segments used for the figures in this Arti-
cle, we tried splitting data into bigger segments (for example, ~400 
trials instead of 50 per unit). Trials are collected consecutively in experi-
ments, and so shared error variance across trials may exist. Splitting 
data into units that are too small and randomly sampling them may 
give estimates of necessary numbers for stable results that are overly 
optimistic. Results showed that, while the within-participant variance 
slightly decreased with smaller segments for some participants, the 
differences in trajectories were trivial, suggesting similar stabilization 
points across different segment sizes (Supplementary Fig. 11).

Simulations
We ran simulations to further investigate the associations between 
within- and between-participant variability and the ability of different 
analysis methods to address these associations.

Simulation 1—effects of trial sample size on estimate variabil-
ity. To investigate the hypothesis that between-participant standard 
deviation stabilizes with sufficient trial sampling when inflated by large 
within-participant error, we conducted and compared simulations of 
two models (Fig. 5). For both models, data were simulated on the basis 
of the selected sample of 185 participants from the dataset of Robinson 
and Steyvers49, each with more than 2,500 correct trials. Each par-
ticipant’s distribution was simulated using the Pearson system, which 
constructs a distribution based on input parameters for mean, standard 
deviation, skewness and kurtosis107. Critically, the number of trials sam-
pled per simulated participant differed between the two models; for 
the small trial sampling model (large within-participant variance), 40 
random trials were sampled from the distribution, whereas for the large 
trial sampling model (small within-participant variance), 1,000 trials 
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were sampled. Forty were tested in the NIH Toolbox Flanker Inhibitory 
Control and Attention Test, while 1,000 trials is the amount we suggest 
provides stable estimates of the congruency effect. Furthermore, to 
observe how between-participant standard deviation changes with 
increasing trials, we systematically increased the number of trials 
drawn from each starting point (40, 80, 160, 320 and 640 versus 1,000, 
2,000, 4,000, 8,000 and 16,000). The two models were created with 
100 repetitions to get the mean and its 95% confidence interval across 
iterations.

Simulation 2—impact of within-participant variability on apparent 
between-participant differences. To examine when within-participant 
variability starts to contaminate apparent between-participant variabil-
ity, a series of simulations was conducted (Fig. 6). First, based on Hedge 
et al.’s32 study of 101 participants, we created a congruency effect distri-
bution with a mean of 40 ms, standard deviation of 18 ms, skewness of 
0.39 and kurtosis of 2.95. From this distribution, 100 simulated partici-
pants were sampled. For each simulated participant, we set the mean to 
the sampled value from the full distribution and the within-participant 
standard deviation to one of the preset values: 4.7 ms, 6.7, 9.3, 13.1, 
18.8, 26.8, 38.1 and 53.2 (these values represent the 95% confidence 
interval of the mean congruency effect in the EPIC flanker task data, 
corresponding to 6,400, 3,200, 1,600, 800, 400, 200, 100 and 50 tri-
als, respectively). The skewness of this within-participant distribution 
was −0.0022, and the kurtosis was 2.9967. We randomly sampled data 
from this simulated participant. The data were accumulated across 100 
simulated participants, and the apparent between-participant standard 
deviation was measured. This simulation was repeated 1,000 times 
to plot the mean and its 95% confidence interval. We also conducted 
similar simulations but with varying between-participant standard 
deviation (5, 10, 20, 30, 40, 50 and 60 ms) and numbers of simulated 
participants (50, 100, 200, 300, 400, 500 and 1,000) to examine how 
the size of individual differences and number of participants affect 
the contamination.

Simulation 3a—effects of number of participants and number of 
trials on rank order. We used the dataset from Hedge et al.32 to simulate 
cross-participant rank order consistency across different numbers of 
participants and trials per participant (Fig. 7). To set the parameters 
for these simulations, we first calculated the mean reaction time and 
accuracy for congruent and incongruent trials of 101 participants of 
Hedge et al.’s flanker task data (group mean 419 ms (congruent), 460 ms 
(incongruent); standard deviation 44 ms (congruent), 52 ms (incongru-
ent)). As congruent and incongruent trials are highly correlated30,31, 
we generated correlated samples using a multivariate probability 
distribution (MATLAB function, copulas). Each simulated participant’s 
mean was drawn from this distribution. Next, each participant’s distri-
bution was generated using the within-participant standard deviations 
calculated from Hedge et al.’s data (group mean standard deviation 
77 ms (congruent), 101 ms (incongruent)). To assess the effects of trial 
numbers on rank order consistency, different numbers of trials were 
sampled from these distributions (50, 100, 200, 400, 800, 1,600 and 
3,200). In addition, Gaussian noise was added when sampling trials 
to simulate trial variability similar to that observed in Hedge et al.’s 
data. The noise sigma for reaction time and accuracy was optimized 
by minimizing the sum of squared errors of ICCs, ensuring alignment 
with the variability in the original data.

We then examined the impact of the number of trials and the num-
ber of participants on rank order consistency between the true mean 
and the apparent mean. The true mean for a participant was the value 
directly sampled from the between-participant distribution, while the 
apparent mean was the mean of n trials (n = 50, 100, 200, 400, 800, 
1,600 and 3,200) sampled from the within-participant distribution, 
with added random noise. The number of simulated participants was 
also varied (50, 100, 200, 300, 400, 500, 1,000, 2,000 and 4,000). 

Finally, we calculated the absolute agreement across k measurements 
(ICC(A, k))108 to assess the rank order consistency.

Simulation 3b—correlation between congruency effect and 
incongruent trial performance. Using the same simulation method 
described above with Hedge et al.’s (2018) data32, we also examined 
the correlation between the congruency effect and performance on 
incongruent trials (Extended Data Fig. 2; reaction time and per cent 
error ((1 − accuracy) × 100); both measures on incongruent trials were 
expected to positively correlated with congruency effect). For this 
analysis, 500 participants were simulated, and for each participant, 
3,200 trials were sampled to calculate the mean. These amounts 
were expected to give highly precise individual estimates. The cor-
relation was calculated with Kendall’s rank correlation coefficient 
and ICC(A, k).

Simulation 3c—effects of trial number on drift–diffusion mod-
elling of inhibitory control. Using the same simulation method as 
simulation 3a, we examined how trial number affects the reliability of 
drift–diffusion modelling parameters (Supplementary Fig. 12). Due 
to its simplicity, ease of implementation and suitability for relatively 
sparse datasets, we performed EZ-diffusion modelling62. We simulated 
100 participants and calculated the cross-participant reliability of the 
EZ-diffusion modelling parameters: drift rate, boundary separation 
and non-decision time. The key manipulation was to systematically 
increase the number of trials (50, 100, 200, 400, 800, 1,600 and 3,200). 
Sampling was done twice for each participant to assess test–retest reli-
ability, using ICC(A, k). We compared these results with the reliability of 
the congruency effect reaction time and congruency effect accuracy.

Simulation 3d—effects of trial number on factor analyses of inhibi-
tory control. We conducted CFA using simulated data based on Hedge 
et al.’s32 flanker and Stroop task data (Extended Data Fig. 9). Similar to 
EZ-diffusion modelling, the goal was to observe how the number of 
trials per participant affects the reliability of the factor analysis. As a 
preliminary analysis, we ran P-technique factor analysis using the EPIC 
dataset to investigate whether the flanker task, prime–probe task and 
Stroop task share a latent factor. The best-fitting solution for six partici-
pants identified one factor, while for two participants, the best-fitting 
solution comprised two factors. Accordingly, we ran a CFA on the three 
tasks using a model containing one latent factor across varying num-
bers of trials per participant. We then simulated data using a method 
similar to that described for simulation 3a. While Hedge et al.’s dataset 
did not include a prime–probe task, simulations using only the flanker 
and Stroop tasks resulted in some simulated participants lacking a 
shared latent factor. To address this, we simulated prime–probe task 
data based on a combination of Hedge et al.’s Stroop task and the EPIC 
dataset’s prime–probe task: the group mean and standard deviation 
were derived from the EPIC dataset, while individual distributions were 
based on Hedge et al.’s Stroop task data.

In addition to trial number, we manipulated cross-task correlation 
(at levels of 0.1, 0.4, 0.6, 0.8 and 1) by constructing three-dimensional 
probability distributions of the congruency effects across the three 
tasks. For the EZ-diffusion modelling simulation (simulation 3c),  
correlated samples for congruent and incongruent trials were  
generated separately by constructing a multivariate probability density 
that reflects the linear correlation between congruent and incongru-
ent trials. By contrast, for this CFA simulation, a congruency effect  
value was simulated from the three-dimensional probability density, 
which captures the cross-task correlations among the three tasks. 
The CFA across the three tasks of 100 simulated participants was 
repeated twice to compute the test–retest reliability, and this process 
was repeated 100 times to obtain each participant’s mean scores. The 
resulting reliability of each task’s congruency effect and factor score 
was then plotted.
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Simulation 4—comparing the traditional frequentist and the 
Bayesian approaches. We used WinBUGS and R packages (R2Open-
BUGS and lme4) to compare the frequentist (non-hierarchical) and 
the Bayesian hierarchical modelling estimates of the congruency 
effect across several different conditions (Extended Data Fig. 10). 
Twenty-five replications of reaction time data were simulated per 
condition, based on flanker task data from the work of Robinson and 
Steyvers49. For the different conditions, we manipulated the number of 
trials (50, 100 and 500) and the ratio of within-participant variance to 
between-participant variance (5, 10, 20 and 40). These two factors were 
fully crossed to produce 12 total conditions. The number of simulated 
participants was fixed at 100. After the 25 datasets were simulated, we 
conducted multilevel modelling, using the lme4 package, to obtain 
unbiased estimates of between-participant variability in the congru-
ency effect and trial-level variability in reaction time within partici-
pants. Next, using WinBUGS, Bayesian estimates of individual-level 
congruency effects were obtained. The unbiased estimates from 
multilevel modelling were used for the variance terms in the priors. 
For the frequentist non-hierarchical approach, individual-level con-
gruency effects were estimated by simply calculating mean reaction 
time separately for congruent and incongruent trials, then taking the 
difference in these mean values for each participant. We evaluated the 
precision of the estimates with the mean absolute deviation between 
the generated (true) congruency effect and the estimated congruency 
effect values.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available via OSF at 
https://osf.io/jk9nb (https://doi.org/10.17605/OSF.IO/JK9NB).

Code availability
The code for the experimental tasks and data analyses conducted in 
this study is available via GitHub at https://github.com/GrattonLab/
LeeSmith_EPIC.
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Extended Data Fig. 1 | Rank order matrices of the congruency effect.  
a) reaction time and b) accuracy from the EPIC data. The grand mean congruency 
effect for each participant across all sessions was calculated with the same 
exclusion criteria applied to remove outliers as for plotting Fig. 2. Then, we 
ranked for each task with participants exhibiting larger congruency effects 
ranked higher. Finally, we plotted these matrices to show the rank consistency 

across the three tasks. Despite our small sample, we observe notable consistency 
in the ranks, with the same or highly similar ranking across the three tasks 
(for example, EPIC 05 and 08 for reaction time, and EPIC 03, 04, 08 and 10 for 
accuracy). For both reaction time and accuracy, all participants show either the 
same rank or a difference of just one rank for at least two tasks, suggesting that 
rank orders across tasks can be consistent with extensive sampling.

http://www.nature.com/nathumbehav


Nature Human Behaviour

Article https://doi.org/10.1038/s41562-025-02198-2

Extended Data Fig. 2 | Rank order consistency between congruency effect 
and incongruent trial performance. We used Robinson and Steyvers’49 data 
(a and d), Hedge et al.’s32 data (b and e) and simulated data with extended 
sampling (c and f). We simulated Hedge et al.’s empirical data by extending to 
500 participants and 3,200 trials to resolve sampling variability (see Methods for 
details). To address the low reliability of the congruency effect, one proposed 

solution is to substitute it with performance on incongruent trials. However, this 
raises an important question of whether they measure the same construct. Our 
reaction time results demonstrate that, although they are correlated, the rank 
orders can still differ. Note that even with extended sampling, Kendall’s τ = 0.37 
(ICC = 0.70). Interestingly, however, the rank order is more consistent for percent 
error results, yielding Kendall’s τ = 0.65 (ICC = 0.91) with extended sampling.
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Extended Data Fig. 3 | Performance improvement in the congruency effect 
over time. a) reaction time and b) accuracy in the EPIC data. Each data point is 
the mean of three consecutive sessions, which yields approximately 1,000 trials 
when concatenated (1,200 for flanker, 1,152 for prime-probe and 864 for Stroop). 
This sampling was to minimize session-level variability (see Fig. 2 violin plots for 
variability across sessions). Notably, in reaction time data, congruency effects 
decrease in all three tasks, but the decrease is most prominent in the flanker task. 

Variation also exists across participants. It is possible that these effects observed 
over the course of sessions may be attributable to the time intervals between 
sessions, as Robinson and Steyvers’49 data do not show these effects. To address 
these effects, we regressed them out using a linear model (see Extended Data 
Fig. 6 for with and without linear regression). For accuracy, the trajectories seem 
relatively random, not displaying obvious linear trends as in reaction time data.
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Extended Data Fig. 4 | Assessing performance impairment across sessions. 
This figure shows connected dot plots for performance on all trials (congruent 
and incongruent) combined, presented in terms of a) reaction time and b) 
accuracy across sessions of the EPIC data. For reaction time, incorrect trials and 
outlier (defined as those more than three standard deviations from the mean) 
were removed to calculate the mean for each session. We examined whether 
performance deteriorated in later sessions (that is, longer reaction times or 
poorer accuracy). The results show no systematic evidence of performance 
deterioration, as overall reaction time is generally consistent across sessions 
(except for EPIC 10). Overall accuracy shows some day-to-day variability, 

but around relatively small differences in close to ceiling performance (all 
participants showed greater than 89% accuracy in all sessions). Notably, while 
some participants show faster reaction times in later sessions (for example, EPIC 
03 in all three tasks), this would more readily be interpreted as performance 
improvement due to practice, as accuracy is also higher for later sessions. 
In conclusion, although tested extensively across 18 sessions, we do not see 
substantial evidence for performance impairment across sessions in our dataset. 
This may be because our participants were a relatively homogeneous set who 
were highly motivated to participate in the study.
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Extended Data Fig. 5 | Assessing performance impairment within sessions. 
This figure compares the first and second halves of the sessions of the EPIC data. 
Each session was divided into halves and the overall mean a) reaction time and b) 
accuracy were calculated for the 18 sessions. The goal was to examine whether 
any deterioration in performance within a session would occur, possibly due to 
factors such as boredom or fatigue, from testing approximately 400 trials per 
task (400 for flanker, 384 for prime-probe, and 432 for Stroop). Note that our 
participants performed two tasks in each session, so they were tested for about 
800 trials in less than an hour. Each dotted line corresponds to one participant’s 
mean, and the bar graphs show the group average of all participants. Except for 
the prime-probe task reaction time, overall, reaction time is higher, and accuracy 

is lower for the second half. However, statistical analyses (repeated measures 
ANOVA with session half as a variable separately conducted for each task and 
measure), show that only the difference between the two halves is significant for 
the Stroop task reaction time (with Bonferroni correction), F(1, 7) = 13.25, 
p < 0.001, MSe = 23.92, η2

p = 0.65. Note that the Stroop task had the most trials. 
For the flanker and prime-probe tasks, we did not observe significant 
performance degradation in the second halves of the sessions, Fs < 1.72. In sum, 
testing about 800 trials in a session, at least in our dataset, does not show 
significant performance degradation in the latter half of each session, although 
some (below threshold) impairment effects may be present. These results argue 
for not extending a single session to longer than the hour collected in this dataset.
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Extended Data Fig. 6 | Before and after linear regressions on the congruency 
effect. Related to Extended Data Fig. 3 that decreases in reaction time congruency  
effect are observed in the EPIC data, we regressed these effects with a linear 
model before implementing our two methods to draw stability curves. As the 

improvement effects are most prominent in the flanker task, the difference 
between before and after regression is also most noticeable for the flanker task. 
Notably, all participants exhibited congruency effects throughout the extent of 
data collection even when regressing out the improvement effects.
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Number of trials

Number of trials

A) Mean Squared Error 

B) Between-Participant Standard Deviation

Extended Data Fig. 7 | Bias can be corrected but the imprecision may still be 
high without sufficient trials. a) Trial noise in congruency effects estimated with 
mean squared error as a function of number of trials. b) Sample versus corrected 
(by accounting for trial noise in the estimate) between-participant standard 
deviation. For both plots, the line indicates the mean of 1,000 simulations using 
Robinson and Steyvers’49 data, and the shaded error bar is the 95% confidence 
interval. The goal here is to examine whether correcting between-participant 
standard deviation can be an effective strategy to get stable results when the 
number of trials is limited. We showed in Fig. 4 that the inflation of sample 
between-participant standard deviation can be rectified with sufficient trial 
sampling above 1,000 trials. Another effective way to correct the inflation is to 
separate trial noise from the sample between-participant variability39. Sample 

between-participant variance takes the following equation, 2σ
2

T
+ σ2

d
, where σ2

d
 is 

true between-participant variance and 2σ
2

T
 is two times the within-participant 

variance (mean squared error) divided by trial number. We solved this 
equation for true between-participant variance (the ‘corrected’ value) and 
plotted it as a function of number of trials. We simulated data using Robinson  
and Steyvers’ data parameters and sampled 25, 40, 50, 100, 200, 400 and  
800 trials per condition, each for 1,000 times. We then plotted the mean  
and 95% confidence interval of the 1,000 simulations. Results show that 
correcting between-participant variability by accounting for trial noise in 
congruency effects effectively reduces bias/inflation and may be a promising 
approach that could be widely adopted. However, as the error bars show,  
the imprecision is still high with few trials. Thus, even with this correction 
method, a good estimate requires sufficient trials per participant. Note also  
that while this approach will help to reduce bias in estimates of 
between-participant variability, it does not give precise individual-level 
estimates of the congruency effect.
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Extended Data Fig. 8 | Reliability of EZ-diffusion modelling with increased 
within-participant data. a) Split-half reliability of the EZ-diffusion modelling 
as a function of number of trials using Hedge et a,’s32 empirical data. This plot 
corresponds to Fig. 8, which used Robinson and Steyvers’49 data instead. The 
scatter plots and the ICCs of the congruency effect reaction time, accuracy, 
drift rate, nondecision time and boundary separation are shown. All results are 
difference scores between congruent and incongruent conditions. We increased 
the number of trials (50, 100, 200 and 400) sampled from the data to examine 

the effect of trial size on reliability. Results show that ICC increases with more 
trials, particularly for drift rate, consistent with Fig. 8. Below shows bootstrapped 
95% confidence interval of the ICC using b) Robinson and Steyvers’ data and c) 
Hedge et al.’s data to observe their precision across different number of trials. 
The orange lines indicate the ICC and the coloured shaded error bars are the 95% 
confidence interval of the ICC. The results show that ICC increases with more 
trials as well as its precision.
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Extended Data Fig. 9 | Reliability of confirmatory factor analysis across 
trial numbers. The data were simulated using the flanker task and Stroop 
task data from Hedge et al.32, along with the EPIC prime-probe task data (see 
Methods for details on the simulation). The ICCs of the factor scores are plotted 
across increasing numbers of trials, compared to the ICCs of the individual 
task congruency effects. Based on P-technique factor analysis on the EPIC 
dataset’s three tasks, we ran confirmatory factor analysis (CFA) on the simulated 

data, assuming one shared factor. We also manipulated the level of cross-task 
correlations when simulating the three task datasets (r = 0.1, 0.4, 0.6, 0.8 and 
1). The results show that the test-retest reliability of factor scores improves 
with more trials, suggesting that CFA is also influenced by trial sampling size. 
Additionally, reliability critically depends on cross-task correlation; when cross-
task correlation is high, the reliability of the factor score exceeds that of the 
individual task congruency effects.
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Extended Data Fig. 10 | Comparing frequentist non-hierarchical and 
Bayesian hierarchical approaches. To determine the extent to which a Bayesian 
hierarchical approach may or may not produce more precise congruency 
effect estimates than a frequentist non-hierarchical approach, we carried out 
a simulation, using Robinson and Steyvers’49 data, and compared parameter 
recovery between the two methods. Specifically, we evaluated the mean absolute 
deviation between the generated (true) congruency effect values and the 
recovered (estimated) congruency effect values. Mean absolute deviation values 
were then compared between the hierarchical Bayesian and non-hierarchical 
approaches. The manipulated factors in the simulation include the number of 
observed trials (50, 100, and 500) and the ratio of within-participant variance 
to between-participant variance, indexed as follows: A) 5, B) 10, C) 20 and D) 
40. These factors were fully crossed, producing 12 total conditions. What is 
noteworthy is that there is an interaction effect with respect to the impact 

of trial number and within-participant variance on the hierarchical Bayesian 
improvement in mean absolute deviation. The hierarchical Bayesian approach 
offers a dramatic improvement when the number of trials is small and the 
within-participant variance is large. However, the precision of the hierarchical 
Bayesian and non-hierarchical estimates converge as trial number increases 
and within-participant variance decreases. By 500 trials, regardless of within-
participant variance, there is virtually no difference in the precision of the 
estimates between the two methods. Note, additionally, that it requires at least 
500 trials to obtain precision estimates in the target 4 to 9 ms range. Thus, if one’s 
goal is to obtain estimates with a degree of precision in this target range, then a 
hierarchical Bayesian approach will not provide any additional benefit beyond a 
non-hierarchical approach. However, if resources are limited and one must settle 
for a non-optimal number of trials, a hierarchical Bayesian approach will provide 
utility.
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