nature human behaviour

Article

https://doi.org/10.1038/s41562-025-02198-2

Preciseindividual measures of

inhibitory control

Received: 6 October 2023

Accepted: 1 April 2025

Published online: 28 May 2025

Hyejin J.Lee®1238
Ally Dworetsky"®, Brian T. Kraus®, Megan Dorn ®°, Derek Evan Nee ®' &
Caterina Gratton ®"2%%7

, Derek M. Smith*5%, Clifford E. Hauenstein®*?,

% Check for updates

Inhibitory controlis essential to daily function andis a key factorin

numerous psychiatric disorders. One popular measure of inhibitory
controlis the congruency effect, but recent research has highlighted its
low reliability, limiting its use for clinical and basic research questions.
Here we asked whether it is possible to obtain precise individual estimates
of the congruency effect. We sampled more than 5,000 trials from nine
participants across four inhibitory control tasks. This dataset, made public
for the community, demonstrates that precise individual estimates are
achievable but with higher numbers of trials than typically collected with
common tools. Using a combination of datasets and simulations, we show

that extensive samplingis necessary to reveal true individual differences and
improve observations from alternative modelling approaches. We share our
datasetasaresource to further understand sources of variation ininhibitory
control, ultimately advancing research in this critical field.

Inhibitory control refers to the ability to resist interference and sup-
press dominant responses to carry out goal-directed behaviour' s,
Inhibitory control helps to enable everyday activities and achieve
goals on diverse timescales’ . Deficits in inhibitory control have
beenimplicated inanumber of psychiatric disorders, including obses-
sive-compulsive disorder'>", schizophrenia'*" and attention deficit
hyperactivity disorder'. Accordingly, multiple efforts are underway
tounderstand variationininhibitory controlacross individuals as well
aswithina person over thelifespan, and to connect this variation with
neurobiological markers. These include large consortium data collec-
tion projects, such as the Adolescent Brain Cognitive Development
(ABCD) study".

Inhibitory control in laboratory settings is often examined with
tasks that contrast the impact of high-conflict distractors (that is,
incongruent trials) relative to low conflict situations (congruent tri-
als). The difference between these types of trials is referred to as the

congruency effect’®?° and is taken to be a reflection of control (note

that some may suggest that ‘interference control’is more appropriate
for describing this process with a mechanistic focus; however, given
that ‘inhibitory control’ismore commonly used (for example, National
Institutes of Health (NIH) Toolbox Flanker Inhibitory Control and
Attention Test), we also use it here without committing to any specific
underlying mechanisms of control). The congruency effect has been
extensively tested and highly replicated?. It has also been suggested
that the congruency effect is stable across time”, indicating that it
may represent a trait-like characteristic of a person. These properties
have prompted many to use the congruency effect to investigate both
individual-level inhibitory control within and between individuals®
and relate this variation to neural activity>**’.

However, poor reliability is likely to be a major obstacle in these
enterprises®’. Several studies have reported low reliability in measures
ofinhibitory control, particularly in the widely used congruency effect,
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Fig.1| EPIC dataset. Nine participants (5 females and 4 males, ages 18-30 years;
one participant was excluded from the current analyses) completed 4 inhibitory
control tasks across 36 sessions (with 2 tasks per session; the order was
counterbalanced across participants). Exemplar trial sequences of the tasks are
shown. Modifications to the task stimuli and background colour were made for
visualization purposes. Each session started with a Qualtrics survey assessing
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task

daily activities and mood, followed by a simple reaction time task measuring
reaction time to asingle visual stimulus (that is, a white square). Two of the
fourinhibitory control tasks were then administered. We also collected Big

Five personality traits. Participants were tested either in the laboratory or at
home. More details on the dataset and experimental designs can be found in the
Methods. The dataset is available at https://osf.io/jk9nb/.

which relies on reaction time difference scores® *. This issue limits
the ability of these measures to be used for clinical applications®**
and for predicting self-regulation in the real world***". Low reliabil-
ity may also confound theoretical interpretations to other control
functions®~**, Importantly, poor reliability is a major obstacle to
identifying relationships between the brain and behaviour*’; recent
studies have demonstrated that, when the reliability of behavioural
measuresis low, brain-based prediction of the behavioural phenotype
is extremely poor*"*2, Unsurprisingly, given this background, inhibitory
control measured with the NIH Toolbox Flanker Inhibitory Control and
Attention Test had one of the lowest brain-based prediction accuracies
inthe Human Connectome Project (HCP) dataset®.

The low reliability of the congruency effect has been attrib-
uted to a combination of high measurement error (leading to
low within-participant precision) and limitations in estimating
between-participant variation®****°, Some have suggested that esti-
mates of the congruency effect could be improved by recruiting more
diverse samples*, modifying experimental designs® or usingmodelling
approaches, such as drift-diffusion modelling®**¢, factor analysis* or
hierarchical modelling®?*¢, However, to reduce measurement error,
the most straightforward approach is to increase the number of trials
collected per participant. Past research has used simulationsto call atten-
tiontothe need for larger trial numbers to increase reliability”. As of yet,
itremains anopen questionwhetheritis possible to achieve asufficient
level of precision in individual-level estimates and what trial number is
needed for these estimates to have utility as a phenotypic marker.

Here, we sought to empirically estimate the peak precision pos-
sible for the congruency effect once measurement error was reduced
by collecting a very large number of trials. To this end, we collected data
from 9 participants across 36 sessions as they completed 4 inhibitory
control tasks (3 of which included congruency effects). We call the
dataset EPIC or the Extended Precision measurement of Inhibitory
Control. Using this approach, we sought to determine the maximal
precision of the congruency effect that can be achieved within indi-
viduals. We used this approach to ask whether increasing trial numbers
effectively reduces measurement error without introducing system-
atic variability related to repeated testing. We also investigated how

many trials are needed to achieve the desired levels of reliability and
whether this number is feasible without requiring prohibitively long
testing. Finally, using this dataset, along with other public datasets and
simulations, we examined how collecting more trials affects estimates
of between-participant variability and the performance of advance
modelling approaches. We provide the EPIC dataset as a resource for
the community to further assess measurement properties of inhibitory
control within individuals over time and as bases for simulation stud-
ies and model validation to benchmark new analysis methods. These
investigations are essential to determine whether inhibitory control
measures are useful to pursue in basic and clinical research projects.

Results

Overview

To examine the precision of inhibitory control measures, we collected
EPIC, a dataset with extensive sampling from 9 participants who were
tested on 4 inhibitory control tasks across 36 sessions (Fig. 1). This
dataset includes 3 tasks with congruency effects: a flanker task (with
atotal of 7,200 trials per participant), a prime-probe task (6,912 tri-
als per participant) and a Stroop task (7,776 trials per participant).
The dataset also includes a fourth inhibitory control task (go/no-go,
7,200 trials per participant) that was not analysed here as we focused
on examining the congruency effect. The data from all four tasks are
madeintoapublicly available resource associated with this publication.

Inaddition, wereplicated and extended the findings from the EPIC
dataset using two publicly available datasets: (1) a dataset by Robinson
and Steyvers*, collected online through Lumosity, consisting of 495
participants in a flanker task with 491-5,939 trials per participant,
and (2) a dataset by Hedge et al.*, collected in-person, consisting of
112 participants in the flanker and Stroop tasks with 1,440 trials per
participant. To aid in interpretating these results, we also generated
simulated models based on all three datasets.

Theresults are organized into three major groups. The first group
of results (‘Congruency effects can be measured with high precision’
to ‘Precise congruency effects need more than 1,000 trials’ sections)
shows empirical results from our EPIC data to assess the efficacy of
extensive testing. We examined (1) peak individual-level precision
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Fig. 2| Large within-participant variability versus precise individual
estimates. a, The session mean reaction time for the congruency effect. Each
violin plot represents a participant’s mean congruency effect across sessions
(one dot per session, totalling 18). The plot depicts the probability density
ofthe congruency effect across trials (400 trials for the flanker task, 384 for

the prime-probe task and 288 for the Stroop task; note that the total for the
Stroop task excludes neutral trials). The white dot indicates the median of the
18 sessions. The height of the density plot, which reflects the relative frequency
of congruency effect values, shows an extended oblong shape rather than
clustering around a single value, suggesting large variability within participants
across sessions. b, Grand mean reaction time across all sessions (7,200 trials for
the flanker task, 6,912 for the prime-probe task and 5,184 for the Stroop task).

Participant ID Participant ID

The error bars represent the 95% confidence intervals of the mean, calculated
from1,000 bootstraps. These error bars indicate that highly precise individual
estimates of congruency effects are possible when sampling more than 5,000
trials. ¢, The session mean accuracy for the congruency effect, illustrated in
violin plots. Consistent with a, large session-level variability within participants
isobserved.d, The grand mean accuracy across all sessions and its error

bars. Consistent with b, the accuracy data demonstrate substantially smaller
variability with more than 5,000 trials compared with 400 trials. Performance
was generally high with a smaller congruency effect on accuracy thanon
reaction time across participants. Accuracy and reaction time for each condition
(congruent or incongruent) are shown separately in Supplementary Figs. 2 and 3.
IES are presented in Supplementary Figs.1and 4.

in the congruency effect, (2) temporal effects related to repeated
testing and (3) the number of trials needed to obtain reliable congru-
ency effects. The second group of results (‘Repeated measures reduce
variability in congruency estimates’ to ‘Trial counts matter more than
participantsinreliability’ sections) presents empirical and simulation
results from the two public datasets with larger samples to replicate
and extend our EPIC results. We examined (1) the impact of trial num-
bers onwithin-and between-participant variability, (2) how extended
trial sampling ensures stable results for both estimates, (3) theimpact
of within-participant variability on between-participant variability
and (4) how increasing the number of trials and participants affects

reliability. The final section (‘Advanced models benefit from more
within-participant data’ section) uses all three datasets in combina-
tion with empirical and simulation results to demonstrate how trial
numbers influence diverse modelling approaches (drift-diffusion
modelling, factor analysis and Bayesian hierarchical modelling) used
to address reliability concernsininhibitory control.

Congruency effects can be measured with high precision

First, we examined the maximal precision with which congruency
effects can be measured in each participant once sampling variability
isaddressed using our extensively sampled dataset.
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Figure 2 shows each participant's mean reaction time and accu-
racy for the congruency effect. A comparison of the violin plot for
18 sessions with the grand mean of all sessions shows that precise
individual-level congruency effects can be achieved with sufficient
sampling. Across participants, the average 95% confidence interval
for the reaction time congruency effect in any given session (288-
400 trials) is 17.98 ms for the flanker task, 25.33 ms for the prime-
probe task and 58.45 ms for the Stroop task. Considering the grand
mean congruency effects (44.01 ms for flanker, 73.98 ms for prime-
probe and 58.20 ms for Stroop) along with the between-participant
standard deviation (15.51 ms for flanker, 19.70 ms for prime-probe
and 28.05 ms for Stroop), these are high levels of error. Consider
randomly selecting a single session point from each participant: with
this level of variation, rank ordering participants would frequently
beinaccurate.

By contrast, the congruency effect calculated from the full 5,184 -
7,200 trials across all sessions indicates that single individuals can
have precise congruency effect estimates. With this number of trials,
the 95% confidence intervals are, on average, 4.66 ms for the flanker
task, 6.33 msfor the prime-probe task and 14.12 ms for the Stroop task.
These values are much smaller than those observed for asingle session’s
worth of data. These estimates are precise enough to show consistent
interparticipant differences evenin this small sample of participants.
For example, EPIC 07 shows relatively small congruency effects in all
three tasks whereas EPIC 08 shows large congruency effects. The rank
orderings between EPIC 05and 06,07 and 08,and 10 and 12 are consist-
entacrossthe tasks. However, some effects differ by task. For example,
therelative positions of EPIC 03 and 04 swap between the flanker and
Stroop tasks (see Extended Data Fig. 1for rank order consistency across
the three tasks).

Accuracy results also demonstrate that more precise estimates
can be achieved with larger amounts of data. We also found consist-
entresults in the inverse efficiency scores (IES), which combine reac-
tion time and accuracy to account for speed-accuracy trade-offs
(Supplementary Fig.1). For asummary of the individual grand means
and standard errors of reaction time, accuracy and IES, see Supple-
mentary Tablel.

Inaddition, we replicate previous findings®, showing that session-
by-session variability is lower for incongruent and congruent perfor-
mance when measured separately (Supplementary Figs. 2-4). This is
because difference scores are associated with anincrease in sampling
variability; when the two components of a difference score are corre-
lated, asis the case with congruent and incongruent trials, the subtrac-
tion removes reliable variance, increasing the proportion of variance
attributable to error’***°*!, Given recent suggestions to replace the
congruency effect with incongruent trial performance®-*?, we con-
ductedananalysis ontherank order consistency between congruency
effects and incongruent trial performance to examine whether the
two are measuring similar constructs using the two public datasets
(Extended Data Fig. 2). The results demonstrate that they are corre-
lated, but inconsistency in rank orders also exists, lending caution to
the idea of substituting incongruent trial performance alone for the
congruency effect.

Extensive data collection is feasible

While extensive repetition reduces session-level variability within indi-
viduals, it may introduce variability related to temporal effects. We
examined three potential effectsin our dataset to evaluate the practi-
cality of collecting large numbers of trials: (1) performance improve-
ment over time, (2) performance impairment across sessions and (3)
performance impairment within sessions. Performance improvement
may be linked to practice or learning effects over time. Performance
impairments, whether across or within sessions, could be due to a vari-
ety of sources, such as participants losing interest, motivation, concen-
tration or experiencing increased fatigue. Note that our participants

performed2 sessions for each task per week for 9 weeks. Single sessions
included 2 tasks and lasted for ~45-60 min.

Extended DataFig. 3 shows decreasesin the magnitude of the con-
gruency effect withadditional experiencein the tasks. These effects are
clearestinreactiontimebutvary across participants and tasks. These
effects are absent in the dataset of Robinson and Steyvers*’, which
also acquired hundreds to thousands of trials but across years. Thus,
variability in temporal sampling may play a crucial role in observing
these improvement effects. Notably, across all sessions and tasks, all
participants retained congruency effects in their reaction time meas-
ures despite the presence of these improvement effects.

Extended Data Figs. 4 and 5 show that no strong signs of perfor-
mance deterioration across and within sessions are observed in our
dataset, although a small level of performance degradation within
sessions was observed in the Stroop task. Together, these findings sug-
gest that collecting extensive amounts can be feasible under certain
conditions, which we will elaborate on in the Discussion.

Precise congruency effects need more than 1,000 trials

Next, we asked how many trials are needed to get precise estimates of
the congruency effect withinindividuals. We assessed the precision of
individual-level measures by systematically increasing the number of
trials and identifying the point at which estimates of within-participant
variability in the congruency effect begin to stabilize near zero. This
stabilization point approximates the point at which additional trials
yield diminishing returnsrelative to the effort required to collect them.
Note that the exact level of precision needed will depend on particular
questions and applications. Although we focus on recommendations
based onthelargestimprovementsin reliability, we provide the full sta-
bility curvesinthe Article for readers interested in other applications.

We utilized two methods that assessed the within-participant vari-
ability, as our focus was on achieving precise individual-level measures.
Aswewill demonstratein the nextsection, this stabilization point based
onwithin-participant variability consistently aligns with stabilization
estimates derived from between-participant variability.

Inour primary method, we randomly splitin half each participant’s
datainto two sets, areference set and a test set (trial data were splitin
contiguous segments; Methods). Thereference set was used as our best
estimate score based on alarge amount of independent data (-3,000
trials). We then extracted increasingly large subsets of data from the
test set. We compared congruency effects between the accumulating
test set samples and the reference set, and the stabilization point was
established as the approximate location where the absolute difference
flattens out (this may not ever reach zero, as some level of error due
to, for example, state-based variability, may remain). This approach
provides an estimate of the precision of the congruency effect for each
individual by comparing it with the best measure available. Note that
before running this analysis, we removed the improvement effects
(decreasing congruency effects over time; Extended Data Fig. 3) using
linear regression (see Extended Data Fig. 6 for before-and-after linear
regression; results were similar even when the improvement effects
wereretained in the data as shown in Supplementary Fig. 5).

Our results show that more than1,000 trials are needed for the test
samples to be comparable to the reference set (Fig. 3). At 1,000 trials,
the test samples show an average absolute difference of 4.04 ms per
individual for flanker (9.18% of the grand mean of 44 ms), 5.43 ms for
prime-probe (7.43% of the grand mean of 74 ms) and 9 ms for Stroop
task (15.52% of the grand mean of 58 ms). Although smaller, additional
gainsin precision are seen beyond 1,000 trials as well.

Theseresultsarereplicable using our second method for assess-
ing within-participantreliability, which calculates the width of the 95%
confidence interval for the mean congruency effect with bootstrap-
pingatvarying numbers of trials (Methods and Supplementary Fig. 5).
The width of the confidence interval reflects within-participant vari-
ability inthe congruency effect, and the stabilization point—where the
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Fig. 3| Precision of congruency effect estimates with different trial numbers.
This figure shows the number of trials required to get stable congruency effect
estimates, shown as reaction time stability curves for each participant across
the three tasks. The absolute difference between the reference setand the
accumulating test set sample is plotted as a function of number of trials (on a
logarithmic scale). We defined the stabilization point as the point where the
difference appears to level off, indicating that additional trials provide relatively
smaller benefits (see ‘Within-participant precision of the congruency effect’
section in the Methods for details on the analysis). We estimate this number as
1,000 trials. The curves are comparable across participants and tasks, but the
precision s highest for the flanker task and the lowest for the Stroop task, given
the same number of trials. This suggests that, while more sampling improves
precision untilatleast 1,000 trials, the extent to which precision isimproved

will be affected by particulars of the dataset and the individual participant. The
two vertical lines mark the number of trials collected in the NIH Toolbox Flanker
Inhibitory Control and Attention test (dashed line at 40 trials) and Eisenberg et
al’s** Stroop task (dashed-dotted line at 96 trials). We also plotted the absolute
difference as a percentage of anindividual's grand mean to illustrate how small
the within-participant variability can be (for example, 20% of the grand mean;
Supplementary Fig. 6). In addition, similar stability curves foraccuracy are
shown in Supplementary Fig. 7,and for IES in Supplementary Fig. 8. Our Stroop
taskincludes a neutral condition, allowing us to separate congruency effects for
the two conditions (facilitation: neutral-congruent; interference: incongruent-
neutral); the stability curves for the facilitation effect and the interference effect
are shownin Supplementary Fig. 9. Finally, see Supplementary Fig. 10, which plots
the correlation between the reference set and the test set across participants.

width levels off—approximates the true within-participant variability.
Correlation coefficients between the data from the two methods
for each participant across each task are r > 0.98, suggesting highly
consistent results.

The number of trials needed to achieve these relatively precise
congruency effects (>1,000) exceeds what is typically collected in
most standard study designs. In experimental research, which com-
pares group averages of a sample size of about 30, it is typical for
500-800 trials to be administered per participant®°, For
cross-participant correlational research, the required sample size is
oftenmuchlarger (thatis, hundreds of participants), which typically
comes at the cost of the number of trials per participant*>*°. For exam-
ple, 96 trials were collected per person in Eisenberg et al.s*® Stroop
task, and 40 trials in the NIH Toolbox Flanker Inhibitory Control and
Attention Test”".

With 96 trials, the 95% confidence interval, averaged across par-
ticipants, is 60 ms in the flanker congruency effect (see dashed-dot-
ted lines in Supplementary Fig. 5). With 40 trials, the 95% confidence
interval is 87 ms (dashed lines). These levels of error are substan-
tial, given that the average flanker congruency effect is 44 ms with
a between-participant standard deviation of approximately 17 ms.
Evenlarger errors are seen with these trialnumbers in the prime-probe
and Stroop tasks.

Repeated measures reduce variability in congruency estimates
We have shown that repeated measures can successfully reduce
within-participant error. The nextimportant questionis how repeated
measures affect between-participant variability. If testing more tri-
als continuously reduces between-participant variability, making
measures highly comparable, extensive testing would have limited
benefits for improving the reliability of the congruency effect. Alter-
natively, if it helps toreveal stable between-participant variability once
within-participant error has been minimized, then achieving high levels
of reliability would be possible with extensive testing.

Totest these predictions, we turned to a publicly available dataset
fromRobinson and Steyvers*’, whichincludes online flanker task data
from 495 participants. The number of trials per participant ranges from
49110 5,939 trials. For the purposes of this study, we limited analyses to

participants with good accuracy rates (>70% on average, no sessions
with 0% accuracy) and more than 2,500 correctly responded trials
(Methods). This left a total of 185 participants for analysis.

First, we replicated the findings from the EPIC dataset, showing
thatinthis larger sample, within-participant variability decreases with
greater numbers of trials, plateauing around 1,000 trials (Fig. 4a,c).
This shows that the EPIC results are robust, evenwhen testedinalarger
and more heterogeneous group.

Importantly, as the within-participant error decreases, so does the
between-participant standard deviation (Fig. 4b,d). Consistent with
the trajectory of within-participant variability, between-participant
standard deviation stabilizes after acquiringabout 1,000 trials. These
findings extend our estimation of the approximate number of trials
neededtoachieveahighlevel ofindividual precisionin the assessment
of reliable individual differences.

High trial sampling stabilizes between-participant variability
The association between within-and between-participant variability
may be driven by large within-participant error, which can confound
between-participant variability estimates®>%°%*, as expected from
statistical analysis (Supplementary Equation 1). This contamination
arises because we split the analysis of multilevel data into two steps
when calculating the congruency effect: we first calculate the mean
reaction time for each participant and then calculate the difference
in these mean reaction time for congruent and incongruent trials.
Critically, in the second step, we treat these measures as fixed and
known, without systematically accounting for the imprecisionin their
estimates. As thisimprecision is unaccounted for, between-participant
variability is contaminated by within-participant variability (see also
refs.33,58).

To provide improved intuition for this relationship, we created
two simulated models with cases of small versus large trial sampling
(Fig.5). With small trial sampling, between-participant standard devia-
tion would decrease substantially as trial numbers increase, due to
the high influence of within-participant variability. In contrast, when
trial numbers are high (and, therefore, within-participant variability
isrelatively low), we hypothesized that between-participant standard
deviation would remain stable, revealing its true estimate.
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this dataset. Each grey-shaded line is a single participant, and the overlaid red
lineis the median of the group. Asin the EPIC dataset, within-participant error
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decreases with accumulating trials in the larger sample dataset of Robinson and
Steyvers. Note that, overall, both within- and between-participant variability
are higher in this dataset thanin EPIC, perhaps due to online data collection,
more heterogeneous group and/or wider age range; see the Supplementary
Methods for details on the dataset. b, Between-participant standard deviation
of the congruency effect reaction time plotted as a function of number of trials.
Between-participant variability also decreases with trial numbers and reaches a
stable pointat-1,000 trials. ¢, Stability curves for within-participant estimates
of congruency effect accuracy. d, Between-participant standard deviation of
congruency effect accuracy. The accuracy results are consistent with reaction
time data in that both within- and between-participant variability decrease and
stabilize at~1,000 trials.

The simulation results in Fig. 5 show that Model 1 replicates
key patterns observed in the empirical data of Robinson and
Steyvers* (Fig. 4): When within-participant error is high with
few trials, between-participant variability estimates are both
biased and imprecise. Here, bias refers to a systematic deviation
between the true and estimated parameter values, while impreci-
sion reflects variability due to random error. Given that the stabiliz-
ing point of the between-participant standard deviation (29 ms in
Model 2) is our best true estimate, one can observe that the estimates
under Model 1 are biased (inflated above 60 ms) and imprecise (as
indicated by the large shaded error bars). With more trials, as the
width of the 95% confidence interval for the congruency effect
decreases within participants, the between-participant standard devi-
ation decreases. By contrast, Model 2 features small within-participant
error due to large trial sampling, and the between-participant
standard deviation shows stable estimates. This suggests that,
once within-participant error is reduced with large trial numbers,
more accurate and stable between-participant variability can
berevealed.

Besides collecting more trials, another effective way to cor-
rect for bias is to account for trial-level variability in the estimation
of between-participant variability, as specified in Supplementary
Equation1(refs.33,39). This method (Extended DataFig. 7) effectively
corrects the inflation of between-participant variability, but impreci-
sion of the corrected value can still be high (consistent with Rouder
etal’s*’ findings), probably due toimprecision inaccurately estimating
within-participant variance with small numbers of trials. Therefore,
both unbiased and precise estimates of between-participant varia-
tion likely require atleast anintermediate number of trials, even when
corrected. However, this approach is helpful to apply in situations
where group-level statistics are of interest but cannot provide precise
estimates for anindividual.

Within-participant error biases between-participant estimates
Tofurther highlight theimportance of minimizing within-participant
error, we conducted additional simulations to examine how
within-participant variability and sample size influence estimates of
between-participant variability. This time we directly varied the size of
within-participantvariability, using parameters obtained from Hedge
et al’s* flanker task data. We set the true between-participant stand-
ard deviationto afixed value and simulated participants with varying
levels of within-participant standard deviation. We then measured the
observed (‘apparent’) between-participant standard deviation for each
within-participant standard deviation.

Figure 6a demonstrates that, although the true between-
participant standard deviation is unchanged (18 ms), when
within-participant standard deviation is higher than 9 ms (50%
of the true between-participant standard deviation), the appar-
ent between-participant standard deviation becomes both biased
and imprecise. We replicated these results with different levels of
between-participant standard deviation (Fig. 6b), and again, when
the within-participant standard deviation is higher than about half
of the true between-participant standard deviation, the apparent
between-participant standard deviation starts to grow with higher
error. Note that this growth is more prominent for smaller true
between-participant standard deviations, indicating that measures
with smaller true individual differences would be more severely
affected by large within-participanterrors. These results are consistent
with Supplementary Equation 1: as the estimated between-participant
varianceis the sumof true between-participant variance and impreci-
sion due to within-participant error, the results will be most affected
by large imprecision when the true between-participant variance is
relatively small.

Inmany cases, larger samples can compensate for the low reliabil-
ity ofindividual data. However, increasing the number of participants
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Fig. 5| Between- and within-participant variability based on trial sampling.
This figure shows the comparison of the two models that differ in the number of
trials sampled from within-participant distributions to get the mean congruency
effect: Model 1, with small trial sampling, sampled 40 trials per draw, while Model
2, with large trial sampling, sampled 1,000 trials per draw. These trial numbers
were selected to match the NIH Toolbox Flanker Inhibitory Control and Attention
Test (40 trials) and our estimate of the number of trials needed for stable
congruency effects (1,000 trials). Furthermore, to examine how within- and
between-participant variability change with increasing trials, the number of trials
sampled was systematically increased from each starting point. We simulated
185 participants, whose parameters for within-participant distributions (mean,

Number of trials

standard deviation, skewness and kurtosis) were based on the 185 participants
from the work of Robinson and Steyvers*’ shown in Fig. 4 (see the Methods for
more details on the simulations). a,c, The width of 95% confidence interval of the
mean congruency effect across the number of trials (method 2). One grey line
corresponds to one simulated participant, and the overlaid red line is the group
median. b,d, The between-participant standard deviation of congruency effect
plottedin ablueline and its 95% confidence interval as shaded error bars. Both
within- and between-participant variability decrease with more trials in the small
trial sampling and large error variance (Model 1) but are relatively unaffected by
the number of trialsin the large trial sampling and small error variance (Model 2),
supporting that1,000 trials can provide stable estimates.
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Fig. 6 | Within-participant variability inflates between-participant
differences. a, A simulation of apparent between-participant standard deviation
across different levels of within-participant standard deviation (2.4,3.3,4.7,
6.6,9.3,13.2,18.8 and 26.3 ms; these values correspond to within-participant
variability when trial number systematically varies from 6,400 to 50 in our
dataset). The true between-participant standard deviation was set to a fixed
value of 18 ms (marked by dashed red line) as in Hedge et al.s** dataset. The
simulation was repeated 1,000 times, and 100 participants were simulated in
each simulation (see the Methods for details). The mean of 1,000 simulations is
plotted with its 95% confidence interval as error bars. While the true between-
participant standard deviation is unchanged, its apparent value increases with
the within-participant standard deviation, indicating that large

Within-participant standard deviation (ms)

Within-participant standard deviation (ms)

within-participant error inflates measures of between-participant differences.
This contamination is most evident once the within-participant standard
deviationis higher than -9 ms, half of the true between-participant standard
deviation. b, The simulation from a was repeated with varying levels of true
between-participant standard deviation (5,10, 20, 30,40, 50 and 60 ms shown
indifferent colour lines on the plot). Note that the smaller the true between-
participant standard deviation, the moreit is affected by increases in within-
participant standard deviation. ¢, The simulation from awas then repeated
with varying numbers of simulated participants (50,100, 200,300, 400, 500
and 1,000). Critically, increasing the sample size does not rectify large
within-participant variance contaminating apparent between-participant
standard deviation.

will not rectify bias in between-participant standard deviation.
Figure 6¢ shows asimulation in which the number of simulated partici-
pantsvaries while the between-participant standard deviation s held
constant. Although the error bars decrease with larger sample sizes,
the overall pattern remains consistent, indicating that theinflation of
between-participant variability cannot be resolved by increasing the

number of participants. The within-participant variability itself needs
to be reduced, such as through repeated measures. This fact is also
apparent from Supplementary Equation 1, given that the number of
participants does not affect between-participant variance.

This series of simulations demonstrates that, when within-
participant variability is not appropriately addressed, measures of
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Fig. 7 | Effect of trial and participant numbers on ICC. This heatmap displays
the ICC for the rank orders between the true mean and the apparent mean based
onsimulated data. A simulated participant’s true mean congruency effectis

the value directly sampled from a between-participant distribution, while the
observed or apparent mean is the mean of a given number of trials sampled
from a within-participant distribution (see the Methods for details). The two
key manipulations were the number of participants drawn from the between-
participant distribution (50,100,200, 300,400, 500,1,000, 2,000 and 4,000)
and the number of trials drawn from the within-participant distribution (50,
100,200,400, 800, 1,600 and 3,200) to examine whether increasing either the
number of participants or the number of trials improves the correlation between
the true mean and the apparent mean. Increasing the number of trials alone
results in excellent reliability above r = 0.8, whereas increasing the number of
participants has relatively more limited effects.

between-participant variability will be incorrect®*. Many past studies
have measured inhibitory control using asmallnumber of trials, likely
resulting in within-participant variability that exceeds the expected
between-participant variability. As a consequence, estimates of
between-participant variability in the literature are likely to be often
inflated and imprecise.

Trial counts matter more than participants in reliability
Given that increasing the number of participants can have limited
benefits for accurately estimating between-participant variability, we
compared the effects of increasing the number of participants versus
the number of trials on cross-participant reliability, measured with
intraclass correlation (ICC). This is animportant consideration when
determining the sample size of a study with limited resources, espe-
cially given recent examinations of the trade-off between participant
numbers and testing duration in correlational studies’. Here, we calcu-
lated the correlation coefficient of the rank orders between a simulated
participant’s true mean congruency effect and the apparent mean
across varying numbers of participants and trials using Hedge et al's*
flanker task data (Fig. 7). Replicating and extending the findings from
Fig. 6¢c, we show that collecting more trials—rather thanincreasing the
number of participants—leads to excellent cross-participant reliability.
In this simulation, increasing the number of participants is most
effective in improving reliability when the sample size is small (<200
participants). The effect becomes negligible when the number of trials
isbeyond 800. For example, the ICCis 0.87 when the number of trials is
1,600 and the number of participantsis 500, and it remains unchanged
even when participant numbers increase to 4,000. Even with thou-
sands of participants, the ICC can be below 0.5 when individual-level
estimates of the congruency effect are imprecise due to having trials
assmallas 50.

In contrast, increasing trials effectively improves the ICC. By
increasing the number of trials, it is possible to achieve excellent reli-
ability in even relatively small samples—indeed, with sufficient trials
(>1,000), even with 50 participants, the reliability is above 0.8. For
example, with 3,200 trials and 50 participants, the ICC is 0.89. This
contrasts with the case of having 4,000 participants with only 50 trials
each, where theICCis 0.38.

Consistent with Fig. 6¢, these simulation results demonstrate the
importance ofacquiring precise individual estimates by sufficient trial
sampling rather than participant sampling. These results convey a
critical message regarding the choice between expanding the number
of participants versus the number of trials when resources are limited,
especially when examining measures with high within-participant
variability such asinhibitory control. We expand on this furtherin the
Discussion.

Advanced models benefit from more within-participant data
We have demonstrated the necessity of repeated measures to obtain
precise individual estimates and accurately assess individual differ-
ences in classic congruency effect measures. In our final analyses,
we explored the implications of sampling on alternative methods to
analyse inhibitory controlin congruency effect paradigms. Advanced
modelling approaches, such as drift-diffusion modelling®***°, factor
analysis* and Bayesian hierarchical modelling™, have been proposed
toimprove reliability or investigate unobserved variables in task per-
formance. These methods are often implemented with fewer than a
hundred trials®***'. Building on our findings regarding the critical role
of sufficient sampling, we evaluated how varying trial numbers affect
the robustness of these advanced modelling approaches.

We first show results of EZ-diffusion modelling®® using flanker task
data of Robinson and Steyvers*. We calculated the split-half reliability
of the modelling parameters across different numbers of trials.

Figure 8 demonstrates that increasing the number of trials
improves the ICC for both the congruency effect and the modelling
parameters. Specifically, the ICC for the modelling parameters mir-
rors changes observedinthe ICCforreactiontime and accuracy of the
congruency effect. The ICC for the drift rate increases systematically
with a higher number of trials, requiring at least 800 trials to reach
an ICC of 0.8. In most cases, the ICC for the drift rate does not exceed
that of reaction time or accuracy. Therefore, the modelling results
are expected to achieve high reliability once congruency effects are
measured with high precision, such as with sufficient sampling. We
also calculated the bootstrapped 95% confidence interval for the ICC of
the modelling parameters. Extended Data Fig. 8 shows that, as the ICC
improves with moretrials, its precision also increases, asindicated by
the narrowing of the error bars. We replicated this pattern using Hedge
etal./s** data (Extended DataFig. 8) and asimulation of alarger number
of trials (up to 3,200 trials; Supplementary Fig.12).

In our confirmatory factor analysis (CFA; Extended Data Fig. 9),
we similarly observed that the reliability of the modelling outcomes is
constrained by the reliability of the original data. We simulated three
congruency tasks data using parameters from Hedge et al.’s* flanker
and Stroop tasks, as well as the EPIC prime-probe task, and ran CFA
assuming a single shared latent factor. We examined the reliability of
the factor scores across varying trial numbers. The results show that
the reliability improves with more trials, and notably, cross-task cor-
relation plays animportantrole: if cross-task correlationis weak, even
with sufficient sampling, the reliability of the factor score can remain
low. Conversely, with high cross-task correlation, the reliability of the
factor score exceeds that of the individual task congruency effects.
Thus, precise individual measures can influence CFA results, particu-
larly incases where cross-task correlationis modest. This findingis not
entirely surprising, given that our CFA model assumed a single factor
(based on prior P-technique factor analysis in the EPIC dataset, which
suggested that all participants had at least one estimable latent factor
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Fig. 8| Reliability of EZ-diffusion modelling across increasing trial numbers.
We used 185 participants from the dataset of Robinson and Steyvers*. As
EZ-diffusion modelling requires inputting both reaction time and accuracy®,

we compared the split-half reliability of the modelling parameters (drift rate,
boundary separation and non-decision time) to the congruency effect reaction
time and accuracy. All results are difference scores between congruent and
incongruent trials; for accuracy, drift rate and boundary separation, incongruent
trials were subtracted from congruent trials. For the rest, congruent trials were

subtracted from incongruent trials. We systematically increased the number of
trials (50,100, 200,400 and 800) and calculated the cross-participant reliability
withICC. The results show that the reliability of the drift rate improves with more
trials, but it seems to be limited by the extent to which the reliability improves
for reaction time or accuracy. See Extended Data Fig. 8 for the same plot but
using Hedge et al.s** dataand Supplementary Fig. 12 for simulation results with
extended sampling.

thatthe threetasksload on). However, this dependence emphasizesthe
importance of selecting appropriate priors for factor-level structure
toensurereliable factor analysis results.

Finally, we compared frequentist non-hierarchical and Bayesian
hierarchical methods of analysing the data from the work of Rob-
inson and Steyvers* (Extended Data Fig. 10). Bayesian hierarchical
models correct for measurement imprecision in conditions of low
trial-numbers by shrinking unstable parameter estimates towards the
group mean. This has the effect of downwardly correcting the error
of between-participant variance estimates®. Our own simulations
demonstrate that a Bayesian hierarchical approach provides large
benefits only when the number of trials is small and within-participant
variance is large. In other words, if one has to accept some degree of
imprecision due to resource constraints and a small dataset, then a
Bayesian hierarchical approach will provide less imprecision in the
parameter estimates than anon-hierarchicalapproach. However, both
approaches require a similar number of trials to obtain parameter
estimates precise enough to produce mean absolute differencesin the
range of 4-9 ms from the true values. Thus, while alternative analysis
strategies will probably be useful for improving inference in cases
with high within-participant noise, these strategies are themselves
improved by having more data. Benchmark datasets, suchas EPIC, can
help toestablish better priors forimprovingimplementations of these
analysis and guidelines for the number of trials necessary to obtain
different levels of precision.

Discussion

We have empirically quantified the number of trials necessary to
obtain precise estimates of the congruency effect. We collected a
dataset with more than 5,000 trials for each of our 9 participants in
4 different tasks, 3 of which probed the congruency effect. Using this
dataset, we demonstrated that within-participant variability of the
congruency effect can be significantly reduced through extended
sampling, with gains plateauing around 1,000 trials (500 trials per
experimental condition). Our work complements prior findings from
simulations based on more limited empirical examinations***** and
provides concrete estimates of the trial numbers needed for different
levels of reliability.

We replicated and expanded our findings with two additional
public datasets**’, showing that within-participant variability is of
centralimportinthe comparison ofinhibitory control across people,
as high levels of within-participant error systematically contaminate
estimates of between-participant differences. This error cannot be
resolved by increasing participant numbers and persistsin alternative
analysis methods, including drift-diffusion modelling, factor analysis
and Bayesian hierarchical modelling.

Jointly, these results suggest that additional attention to
within-participant variability is warranted in the study of inhibitory
control for bothbasic research and clinical applications. Although here
we focused on the congruency effect, our findings on the contamina-
tion between within-and between-participant variability and how the
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number of trials reduces bias and imprecisionin between-participant
variance are likely to apply to other tasks and measures.

We share our EPIC dataset as a benchmark resource for the
investigation of inhibitory control. The dataset can serve as a tool to
understand sources of variability ininhibitory control and to quantify
changes in task performance over time. Our dataset can also provide
means to examine relationships across different task measures and
benchmark methods for analysing congruency effect tasks. These
ideas are explored in more detail below.

Inhibitory control estimates can be precise

As laboratory paradigms to investigate inhibitory control have been
scrutinized for having low reliability®’, several alternative approaches
have been suggested. Some have proposed moving away from differ-
ence score metrics that contrast trial conditions®* %, However, this
modification can alter the interpretation of the congruency effect,
as non-subtracted metrics can be influenced by other aspects of pro-
cessing beyond the intended comparison (for example, see Extended
DataFig.2). Others have proposed improving task designs toincrease
control demands or arousal, for example, by combining different con-
gruency tasks or using gamification®. Utilizing smartphones to access
abroader population** or selecting high conflict trials® have also been
suggested. The use of hierarchical models has been particularly rec-
ommended for their ability to separately model trial noise to better
estimate true between-participant variability*>*%48636470,

Alongside these approaches, our results suggest that large trial
numbers are beneficial for more precisely estimating both within-and
between-participant variability. Several studies have previously noted
that collecting more trials would give better estimates of the congru-
ency effects®**¢*, For example, Rouder and colleagues® reviewed
published studies onthe typical ratios of between- to within-participant
variability of the congruency effect and noted that, given the small
ratios, most studies collect too few trials. While there are concerns
thatmore testing could introduce systematic variability due to fatigue
or boredom®, our study demonstrates with empirical evidence that
approximately 500 trials per condition yield precise individual-level
estimates, with relatively small influences from performance impair-
ment over time.

Indeed, using our EPIC dataset, we demonstrate the efficacy of
precisionapproachesinimprovingreliability eveninalternative model-
lingapproaches. These approaches are particularly effective when the
proportion of error variance to total varianceis large (or signal-to-noise
ratio is low”"”?). These measures from our extensive dataset can serve
as gold-standard empirical estimates of congruency effects within
individuals to benchmark the effectiveness of various methods to
improve reliability in future studies.

EPIC, adataset for inhibitory control research

Repeated testing enables the measurement of other sources of
within-participant variability, such as practice effects. All participants
showed congruency effects throughout the duration of data collection,
butdecreasesinthe magnitude were observed with additional experi-
ence performingthe tasksin reaction time data (for prior studies also
reporting similar effects, see ref. 73-75). These performance improve-
ment effects were absent in the data from the work of Robinson and
Steyvers*’. Whereas their data were collected over the span of years,
our participants performed each task twice aweek for 9 weeks. Accord-
ingly, we speculate that the length of interval between sessions may
play acritical role in observing these effects.

One future avenue of interest is to investigate the properties of
these temporal effects and how they vary across tasks, measures and
individuals. Performance improvement effects were most prominent
inthe flanker task and least so in the Stroop task, which had the small-
est and largest within-participant variability, respectively, among
the three tasks (Supplementary Fig. 5). Participants with the smallest

within-participantvariability also demonstrated the most prominent
improvement effects across all three tasks (for example, EPIC 03 and
07).Note that EPIC 03 also showed overall performance improvements,
asreaction time was shorter and accuracy was higher in later sessions
(Extended Data Fig. 4). Accordingly, it may be that participants with
better task engagement, reflected in smaller measurement error, are
more likely to acquire these effects. This hypothesis warrants further
investigation in future studies.

Examining other sources of within-participant changes across and
within sessions related to repeated testing revealed no critical signs of
performance deteriorationin our dataset. However, we observed some
variability across sessions, with the extent of variability differing by
task and participant. Small effects of fatigue were also observed in the
Stroop task over the 1 h of testing. Hence, using our dataset to explore
day-to-day and within-session variation (for example, through slid-
ing window analyses) could offer valuable insights into the nature and
sources of variability ininhibitory control. Forexample, if the congruency
effect remainsrelatively stable within anindividual (not exceeding vari-
ation expected from sampling variability), this may suggest that it has
relatively trait-like characteristics. Variation over time within a session
or across sessions, conversely, could be linked to differences in states,
arousal, or otherindividual characteristics. Longer-term dynamics may
alsobe ofiinterest for tracking longitudinal changesininhibitory control,
particularly inrelation to developmental and degenerative conditions.
Our dataset should serve as a valuable step to initiate this exploration.

Precise estimates are needed for individual differences

The precision of individual-level data should not be compromised
eveninresearchfocused onindividual differences. We demonstrated
through simulations that within-participant and between-participant
variability are linked. This leads large within-participant variability to
systematically contaminate estimates of individual differences. Our
simulation results are consistent with past findings®**’ and converge
with the expectations from statistical equations of between-participant
variance (Supplementary Equation 1).

Although we examined these effects in the domain of behavioural
measures of inhibitory control, they are likely to extend broadly to
otherbehavioural and neural measures. Indeed, the properties of our
relatively simple simulation (Fig. 6) and mathematical expectations
from statistical inference (Supplementary Equation 1) suggest that
estimates of between-participant variability will be contaminated
in any situation where within-participant variability is high and can-
not be recovered by simply sampling more participants. Thus, these
results call for enhanced attention to the precision of individual-level
estimates across a range of experimental paradigms, particularly in
large-scale studies designed to understand individual variation.

Clinical applications, in particular, are likely to be impacted
by these findings. Deficits in inhibitory control have been linked to
ageing’®, psychiatric disorders’”’® and maladaptive behavioursin daily
life, suchas suicide” and drug addiction®’. However, researchin these
areas often yields inconsistent findings. Some studies have found
non-significant differences in inhibitory control between psychiatric
groups and healthy controls® or poor correlations between laboratory
tasks and self-reported surveys that are defined to measure similar
constructs of inhibitory control®. As a result, one might conclude
fromthese studies that older adults or psychiatric patients donot have
deficitsininhibitory control®® or that the laboratory tasks are not valid
measures of real-world inhibitory control®"*,

However, instead, it could be that inhibitory control measures
wereimprecise at the level of individual participants. Study designs for
examining within-participant effects of experimental manipulations
have come to prominence because of their ability to measure robust
group-level effects, including the congruency effect®". This effect
was designed to be robust on average across participants but not at
thelevel of individuals.Indeed, many past studies have acquired about
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a hundred trials or less per participant in an effort to collect a large
group sample (for example, refs. 36,76). The large amount of error
inindividual estimates of inhibitory control with these trial numbers
probably hampers our ability to interpret these measures and connect
them with other constructs, such as measures of psychopathology.
Having precise behavioural measures is also critical for linking
them with neural characteristics. Substantial effort and resources
have beendedicated to understanding how interindividual variations
inbehavioural phenotypes are associated with individual differences
in neural features through large consortium datasets***, However,
studies based on the ABCD and HCP datasets suggest that brain-
behaviour links are weak®¥’. Supporting this, Kong and colleagues®®
demonstrated that brain-based prediction accuracy for flanker task
performance was particularly low among the 58 behavioural meas-
ures in the HCP dataset. Gell and colleagues™ simulation study helps
to explain this, showing that predicting behavioural measures with
low reliability from brain features results in extremely low prediction
accuracy. Given our findings, poor predictive accuracy is not surprising
for datasets and consortiabased on direct or modified versions of the
NIH Toolbox, which typically includes only 40 trials per participant.
Therefore, highly reliable individual measures, such as through suf-
ficient trial sampling, are likely toimprove predictionsin future efforts
to connect brain and behavioural measures of inhibitory control®**°,

Precise estimates advance executive function research
Executive functions are a set of cognitive processes that regulate
thoughts and behaviours to achieve goals, with inhibition being one
of the key components. Extensive prior research has defined, charac-
terized and classified executive functions to demonstrate their central
role to function adaptively in daily life***”'. However, a crucial question
remaining is the unity and diversity of executive functions: whether con-
trolis a unified concept, and whether different tasks measure similar
orrelated control functions®. Some have argued thatinhibition is not
acoherenttheoretical entity and that differentinhibitory control tasks
may tap on different constructs®. Others have argued that inhibitory
control reflects a unitary phenomenon with evidence that a shared
latent inhibitory control factor exists across tasks***2. Factor analysis
isatool for removing error variance and examining underlying shared
constructs”. Our simulation results showed that factor analysisis also
affected by trial variability, highlighting the need for sufficient testing
to ensure reliable modelling. Thus, obtaining robust individual-level
measures through sufficient sampling is important for future studies
aimed at improving understanding of executive functions and their
relationships to various measures.

Collecting more trials versus more participants

Despite prior attention to reliability*>*>**% collecting small numbers
of trials per participant remains common practice, as promoted by
tools such as the NIH Toolbox and their use inlarge consortium datasets
suchasthe ABCD and HCP. In applications related to brain-behaviour
associations, substantial attention has been paid to issues of partici-
pant number inimproving reliability®, but relatively less to issues of
within-participant data collection®?°,

Our simulation results indicate that simply having more partici-
pants when their individual-level estimates are biased will continue
contaminating estimates of true variation across individuals. Large
consortium studies often collect fewer than a hundred trials from hun-
dreds or thousands of participants (for example, ref. 94). Our results
suggest that this approach probably leads to erroneous estimates of
individual differences, especially for measures that require detection
of small differences. Rather, having sufficient trials (1,000 trials)
provides precise individual estimates and reveals true individual differ-
ences even without necessitating hundreds of participants. Of course,
large participantsamples are still necessary to represent the population
and to generate inferences about individual difference variables®°.

However, our findings imply that collecting data from large samples
at the expense of individual precision may be a misleading strategy,
leading to systematically incorrect estimates of individual variability.

Deciding on the optimal combinations of trial size and number
of participantsis a challenging enterprise whenresources are limited.
However, our results suggest that increasing participant numbers at
the expense of very low trial numbers per participant can have concern-
ing consequences on measurement. To be concrete, the simulation
in Fig. 7 shows that having 50 participants with 800 trials achieves a
similar ICC (0.73) to having 1,000 (or 4,000) participants with 400
trials. Thus, assuming 1,000 trials are collected per hour, one can
achieve similar reliability with 40 h of testing compared with 400 h.
More dramatically, one can achieve two times the ICC by going from
4,000 participants with 40 trials (200 h of testing) to 50 participants
with 800 trials (40 h of testing).

Guidelines for precise estimates of inhibitory control

We have shown that the stable congruency effect estimates emerge
with more than 1,000 trials. One might ask whether it is feasible to
collectmore than1,000 trials per participant. It took less thanan hour
to collect1,000 trials for our study.

Additional time per participant can be a constraint for studies that
require alarge sample of participants or multiple tasks. Moreover, for
neuronal measures, such as functional magnetic resonance imaging,
additional design constraints may exist that can lengthen the dura-
tion of each trial, such as allowing for sufficient intertrial intervals to
return to baseline. Another critical problem is recruitment: it may be
easy torecruitalarge number of participants for studies taking only a
few minutes, while it could be more difficult to recruit them for stud-
ies taking hours.

Despite these constraints, our findings demonstrate the impor-
tance of preciseindividual data. Imprecise individual estimates do not
guaranteereliable examination ofindividual differences even with col-
lecting hundreds of participants. In this vein, several other approaches
have also been suggested toimprove congruency effect measurement,
including drift-diffusion modelling*®, factor analysis*” and Bayesian
hierarchical modelling®. We examined the role of trial numbers in
eachofthese strategies and demonstrated that, in all cases, precision
isimproved with higher amounts of data per participant.

Therefore, while the precision approach of collecting large
per-participant data represents more time on tasks than is currently
carried out in many studies, we believe the added precision is worth
theinvestment. This may lead researchers towards study designs with
fewer tasks per participantin an effort to obtainmore reliable estimates
intheindividual measures. Alternatively, researchers may seek to wed
smaller, extensive sampling datasets with larger-scale studies’*s, for
example, by using small datasets to improve priors in the analysis of
noisier larger-scale datasets’.

Conclusion

Using a dataset with extensive per-participant data, we have demon-
strated that it is possible to obtain highly precise congruency effects.
This dataset provides a valuable resource for testing and validating
methods to examine inhibitory control. Our findings, supported by
both empirical and simulation data, consistently highlight the impor-
tance of extended sampling in obtaining precise individual-level esti-
mates and reliable between-participant differences. These principles
may extend beyond inhibitory control, with broad implications for
improving the reliability of measures in both clinical and cognitive
neuroscience research.

Methods

Overview and datasets

Our goal was to determine whether we could obtain highly precise
individual estimates of inhibitory control with sufficient sampling.
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Thus, we collected new data, which we term the EPIC dataset. This
dataset includes extended amounts of data from 9 individuals who
were tested on 4 inhibitory control tasks across 36 days (2 tasks per
day; 18 days per task). Other daily measures were also collected,
including sleepiness (Stanford Sleepiness Scale), sleep time, anxiety
(State-Trait Anxiety Inventory), mood (Positive and Negative Affect
Schedule), depression (Beck Depression Inventory), substance use
and simple reaction time. We also measured the Big Five personality
traits. We describe the dataset and measures in more detail below. We
have made this dataset a public resource for the community to testa
range of questions regarding inhibitory control, within-participant
variation, practice and relationships across measures. For the pur-
poses of this study, we focused on the precision of the congruency
effect measures of inhibitory control, based on three of the four
inhibitory control tasks.

Our preliminary analyses focused on establishing the reliability of
the congruency effectin the EPIC dataset under different conditions.
We then replicated findings from two public datasets of 495 partici-
pantsin aflanker task*’ and of 112 participants in a flanker and Stroop
task®’. These datasets are fromalarger sample of participants, although
with more limited amounts of data per participant. These secondary
datasets are described in more detail in the Supplementary Methods.
We used these datasets to establish properties of between-participant
variability relative to within-participant variability. We complemented
our work on these three datasets with simulations, as described in
more detail below.

EPIC dataset

Description. The EPIC dataset includes data from three congruency
tasks: aflanker task, a prime-probe task and a Stroop task. These tasks
measure the congruency effect in diverse ways, tapping differences
in stimulus presentation, spatial and temporal adjacency of distrac-
tors to targets and loci of interference or control®>**°°, The flanker
taskinstigatesinterference betweenatargetand distractorsinspace,
whereas the prime-probe task induces conflictin time between a prime
(distractor) and a probe (target), which is why some consider this task
tobeatemporal flanker'™). Inthe Stroop task, conflict arises when the
target and the distractor are associated with different attributes of
the same stimulus, requiring suppression of a prepotent response to
the distractor. We also tested a go/no-go task, which measures rapid
inhibition of motor execution, but did notinclude theminouranalyses
of investigating precise estimates of congruency effects (see Fig. 1, a
visual abstract, for the description of the dataset). All data are avail-
ableathttps://osf.io/jk9nb/, and the experiment and analysis code are
available via GitHub at https://github.com/GrattonLab/LeeSmith_EPIC.

Participants. Data were collected from nine healthy adults who were
either members of the laboratory or students at Northwestern Univer-
sity (age mean 25 years, standard deviation 3.61 years; 5 females and
4 males). The study was approved by the institutional review board
of Northwestern University (STU00211073). All provided written
informed consent to participate. Participants were compensated for
eachsessionand received acompletionbonus upon completing all 36
sessions. All had normal or corrected-to-normal vision. Participants
were either testedinthelaboratory or athome by taking thelaboratory
computer home. Data from one participant were removed due to an
issuerelated to key release resultingin consecutive error trialsin later
sessions of the prime-probe and Stroop tasks (EPIC 09). The Article
results are based on the remaining eight participants.

Apparatus. Participants were seated approximately 60 cm away from
an LCD monitor. The screenwas set to have aresolution of 1,440 x 900
pixels and a refresh rate of 60 Hz. All experiments were programmed
with MATLAB (www.mathworks.com) and Psychtoolbox (3.0.16).
Responses were collected with a standard computer keyboard.

Data acquisition procedure. Participants each completed 36 ses-
sions with 4 sessions each week. In each session, participants per-
formed two of the four inhibitory control tasks (flanker, prime-probe,
Stroop and go/no-go tasks), and the order was pseudorandomized
and counterbalanced across participants. The order was miscollected
for EPIC 10, so the data collection was incomplete for some tasks
upon completing the 36th session; this participant completed two
additional sessions to reach the samelevel of task completion. In the
beginning of each session, participants completed a 5-minsurvey on
Qualtrics, responding to questions about their mood, current emo-
tions and activities from the previous 24 h. The survey was followed
by a simple reaction time task consisting of 25 trials per day. In this
task, participants were asked to press the space bar upon seeing
a white square appearing in the centre of the screen. The purpose
was to measure reaction time for motor execution in response to a
stimulus presentation. The data were not analysed but are released
forinterested users.

Task design and procedure

Flanker task. In each session, participants had 24 trials of practice,
followed by 4 blocks with 100 trials per block of the main experiment.
Thetask was torespond to the directioninwhich a central arrow points,
while ignoring the arrows presented beside it, by pressing the left or
right arrow key. Participants were instructed to respond as quickly
and accurately as possible. Participants received feedback on every
trial during the practice and only at the end of each block for the main
experiment. Each trial started with the presentation of a white central
fixation cross on a black background for 1,500 ms. This cross was fol-
lowed by a display of one target arrow in the centre and four flanker
arrows, two placed on the left and the other two placed on the right of
the target, all in white colour for 500 ms. The keyboard response was
recorded from the onset of the stimulus until the end of the follow-
ing fixation cross period. A trial was considered congruent when the
target arrow and the flanker arrows pointed in the same direction and
incongruent when they pointedin opposite directions. The number of
trials was equal between the two conditions. The final total number of
trials collected per participantsis 7,200.

Prime-probe task. The task design was based on Weissman et al.s'?
study. Participants completed 24 trials of practice followed by 4 blocks
of 96 trialsin each session. The task was toignore the preceding prime
letter and respond to the probe letter. One of four letters was presented
to which participants responded with their right hands (by pressing
thekey ‘1'inresponsetoletter ‘A, 2’ toletter ‘B’, ‘3’ toletter 'Y’, and ‘4’ to
letter ‘Z’). Participants were instructed to respond as quickly and accu-
rately as possible. Participants received feedback on every trial during
practice butonly at the end of each block during the main experiment.
A white fixation cross, presented in the centre of the black screen for
1,067 ms, was followed by a white prime letter, which was presented
for 200 ms. After ablank screen appeared for 33 ms, the probe letter,
also in white, was presented for 200 ms. The keyboard response was
recorded from the onset of the prime until the end of the following
fixation cross period. Trials were considered congruent when the
prime and the probe letters cued the same response and incongruent
when they did not. Each trial type (letter combination) was presented
anequal number of times; thus, there were an equal number of congru-
ent and incongruent trials. The final total number of trials collected
per participantsis 6,912.

Although not analysed in this Article, the prime-probe task was
designed to examine how the congruency effect onthe current trial is
influenced by the congruency status of the previous trial'®, without
feature integration and contingency learning**'°*. To avoid contin-
gency bias, the four letters were grouped into two sets (Aand B; Y and
Z) and stimulus response repetitions were prevented by switching
betweensetson eachtrial. The trial sequence was generated under the
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constraint that each congruency sequence (cc, ci,icandii) occurred an
equal number of times. However, because the first trial of each block
doesnot haveaprecedingtrial, one of the four sequencesin each block
occurred one trial less than the others. Across blocks, the sequences
were balanced, with each of the four sequences serving as the less
frequent sequence in one block.

Stroop task. Participants completed 25 practice trials, followed by 4
blocks of 108 trialsin each session. The task was a colour-word Stroop
task, where participants responded to the colour of the word rather
thanits meaning. The colours werered (correspondingly pressing the
key, 1), yellow (‘2’), green (‘3’) or blue (‘4’). Participants responded with
their right hands. Participants were instructed to respond as quickly
and accurately as possible. Participants received feedback at every
trial during practice and only at the end of each block during the main
experiment. Every trial started with a white fixation cross presented
for 1,000 ms on a black screen. A word followed this cross and was
presented on the screen for 1,000 ms. On congruent trials, the ink
colour and word meaning were the same, whereas on incongruent
trials, they were different. One-third of the trials were neutral condi-
tions during whichwordsirrelevant to colour (‘dog’, ‘bird’, ‘horse’ and
‘cat) were presented. With the neutral condition, one can examine
the facilitation effect (neutral-congruent) and the interference effect
(incongruent-neutral). We chose to have the neutral condition only
in the Stroop task because our primary focus was to maximize the
likelihood of obtaining precise estimates in the common inhibitory
control paradigms, specifically the congruency effect. The downside
of including a neutral condition was having fewer trials per condi-
tion. The numbers of trials across the three experimental conditions
were the same. The final number of trials collected per participant is
7,776 (5,184 trials for calculating the congruency effect, excluding the
neutral trials).

Go/no-go task. The task design is a modification of Redick et al.’s'®
paradigm. In each session, participants completed 20 trials of practice.
The mainexperiment was composed of 4 blocks of 100 trials. The task
was to respond by pressing the ‘x’ key with their rightindex finger when
the letter ‘X" appeared (go trials) and withhold responses when other
letters (‘B’,‘C’,‘F’,‘G’,'H’, "), 'K, ‘P’, ‘T’ or ‘Z’; no-go trials) appeared. Par-
ticipants wereinstructed to work as quickly and accurately as possible.
Eachtrial started with a white fixation cross appearing at the centre of
the black screen for 700 ms. This cross was followed by a white letter
presented for 300 ms. Only 20% of the trials were no-go trials toinduce
prepotentresponse executionin the frequent go trials. The total num-
ber of trials collected per participant is 7,200 trials. This task was not
analysed here, but the data are made available.

Data analyses

Preparing EPIC data for analyses. To calculate the mean congruency
effect of 18 sessions and the grand mean of all sessions, we excluded
outlier trialsthat deviated by more than three standard deviations from
the mean within each experimental condition. We used the violinplot.m
function in MATLAB to draw violin plots in Fig. 2 and Supplementary
Figs.1-4 (ref.106). Before examining the stability of congruency effect
results (for example, Fig. 3), we dropped the initial two blocks (200 tri-
als for flanker, 192 trials for prime-probe and 216 trials for Stroop) of
thefirstsessiontoreduceerrors associated withlearning the task rules
and stimulus-response mappings. We also regressed out the improve-
ment effects in reaction time within each task (Extended Data Fig. 3);
after plotting the mean congruency effect as a function of growing
number of trials (by progressively adding half a block of trials), we fit
asimple linear model (see Extended Data Fig. 6 for before-and-after
linear regression). The residuals of this model were used for analyses.
For completeness, we also plotted stability curves without regressing
the improvement effects (Supplementary Fig. 5).

Within-participant precision of the congruency effect. We used two
methods to measure the within-participant precision of congruency
effect estimates. Method 1served as the primary approach for datasets
with asufficient number of trials per participant, asit assesses replica-
bilityinindependent samples withina participant. For each participant,
datawere divided into small units (that s, halfablock, -50 consecutive
trials per unit). Randomly, half of these units were assigned to a refer-
ence set, totalling 2,592-3,600 trials. This reference set provided the
best estimate of the true congruency effect score for each participant.
To determine the sampling size that gives acomparable estimate to this
reference score, one unit from the rest half was randomly selected with
replacementand progressively added to atest set sample. The absolute
difference between the test set sample’s congruency effect and the
reference set’s congruency effect was then calculated. This procedure
was repeated until the test sample size was comparable to that of the
reference set. We repeated this process 5,000 times with different
splits of the participant’s dataintoreference and test samples. The final
results plot the mean across these 5,000 repetitions.

Method 2 was the approach used in datasets with insufficient
number of trials for test-retest comparisons and served to replicate
the findings of method 1. In this method, each participant’s data were
also divided into small units (-50 trials), which were randomly selected
and added to a growing sample. At each step of adding a unit, the
mean congruency effect of the growing sample was calculated. This
procedure was repeated 5,000 times, producing 5,000 estimates of
the mean. These data were then used to calculate the 95% confidence
interval of the mean. The width of the confidenceinterval wasused asan
estimate of within-participant variability. The correlation coefficients
between the two methods of estimating precision in the congruency
effect for each participant for each task were r > 0.98. Note that these
same approaches were used for examining the within-participant
reliability of reaction time (Fig. 3 and Supplementary Fig. 5), accuracy
(Supplementary Fig. 7) and IES (Supplementary Fig. 8). A subset of
these approaches was used to replicate the findings in our secondary
datasets (Fig. 4).

Inaddition to the small segments used for the figures in this Arti-
cle, we tried splitting data into bigger segments (for example, ~400
trialsinstead of 50 per unit). Trials are collected consecutively in experi-
ments, and so shared error variance across trials may exist. Splitting
datainto units that are too small and randomly sampling them may
give estimates of necessary numbers for stable results that are overly
optimistic. Results showed that, while the within-participant variance
slightly decreased with smaller segments for some participants, the
differencesin trajectories were trivial, suggesting similar stabilization
points across different segment sizes (Supplementary Fig. 11).

Simulations

We ran simulations to further investigate the associations between
within- and between-participant variability and the ability of different
analysis methods to address these associations.

Simulation 1—effects of trial sample size on estimate variabil-
ity. To investigate the hypothesis that between-participant standard
deviation stabilizes with sufficient trial sasmpling when inflated by large
within-participant error, we conducted and compared simulations of
two models (Fig. 5). For bothmodels, datawere simulated on the basis
oftheselected sample of 185 participants from the dataset of Robinson
and Steyvers*, each with more than 2,500 correct trials. Each par-
ticipant’s distribution was simulated using the Pearson system, which
constructsadistributionbased oninput parameters for mean, standard
deviation, skewness and kurtosis'”’. Critically, the number of trials sam-
pled per simulated participant differed between the two models; for
the small trial sampling model (Iarge within-participant variance), 40
random trials were sampled from the distribution, whereas for the large
trial sampling model (small within-participant variance), 1,000 trials
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were sampled. Forty were tested in the NIH Toolbox Flanker Inhibitory
Controland Attention Test, while 1,000 trials is the amount we suggest
provides stable estimates of the congruency effect. Furthermore, to
observe how between-participant standard deviation changes with
increasing trials, we systematically increased the number of trials
drawn from eachstarting point (40, 80,160, 320 and 640 versus 1,000,
2,000, 4,000, 8,000 and 16,000). The two models were created with
100repetitions to get the mean andits 95% confidence interval across
iterations.

Simulation 2—impact of within-participant variability on apparent
between-participant differences. To examine when within-participant
variability startsto contaminate apparent between-participant variabil-
ity, aseries of simulations was conducted (Fig. 6). First, based on Hedge
etal’s*’study of 101 participants, we created a congruency effect distri-
bution with amean of 40 ms, standard deviation of 18 ms, skewness of
0.39 and kurtosis 0of 2.95. From this distribution, 100 simulated partici-
pants were sampled. For each simulated participant, we set the meanto
the sampled value from the full distribution and the within-participant
standard deviation to one of the preset values: 4.7 ms, 6.7,9.3,13.1,
18.8, 26.8, 38.1 and 53.2 (these values represent the 95% confidence
interval of the mean congruency effect in the EPIC flanker task data,
corresponding to 6,400, 3,200, 1,600, 800, 400, 200,100 and 50 tri-
als, respectively). The skewness of this within-participant distribution
was—0.0022, and the kurtosis was 2.9967. We randomly sampled data
fromthis simulated participant. The datawere accumulated across 100
simulated participants, and the apparent between-participant standard
deviation was measured. This simulation was repeated 1,000 times
to plot the mean and its 95% confidence interval. We also conducted
similar simulations but with varying between-participant standard
deviation (5, 10, 20, 30, 40, 50 and 60 ms) and numbers of simulated
participants (50,100,200, 300, 400,500 and 1,000) to examine how
the size of individual differences and number of participants affect
the contamination.

Simulation 3a—effects of number of participants and number of
trials on rank order. We used the dataset from Hedge et al.*> to simulate
cross-participant rank order consistency across different numbers of
participants and trials per participant (Fig. 7). To set the parameters
for these simulations, we first calculated the mean reaction time and
accuracy for congruent and incongruent trials of 101 participants of
Hedge et al.s flanker task data (group mean 419 ms (congruent), 460 ms
(incongruent); standard deviation 44 ms (congruent), 52 ms (incongru-
ent)). As congruent and incongruent trials are highly correlated®®?,
we generated correlated samples using a multivariate probability
distribution (MATLAB function, copulas). Each simulated participant’s
mean was drawn from this distribution. Next, each participant’s distri-
butionwas generated using the within-participant standard deviations
calculated from Hedge et al.’s data (group mean standard deviation
77 ms (congruent), 101 ms (incongruent)). To assess the effects of trial
numbers on rank order consistency, different numbers of trials were
sampled from these distributions (50,100, 200, 400, 800, 1,600 and
3,200). In addition, Gaussian noise was added when sampling trials
to simulate trial variability similar to that observed in Hedge et al’s
data. The noise sigma for reaction time and accuracy was optimized
by minimizing the sum of squared errors of ICCs, ensuring alignment
with the variability in the original data.

We then examined theimpact of the number of trials and the num-
ber of participants on rank order consistency between the true mean
and the apparent mean. The true mean for a participant was the value
directly sampled from the between-participant distribution, while the
apparent mean was the mean of n trials (n =50, 100, 200, 400, 800,
1,600 and 3,200) sampled from the within-participant distribution,
with added random noise. The number of simulated participants was
also varied (50,100, 200, 300, 400, 500, 1,000, 2,000 and 4,000).

Finally, we calculated the absolute agreement across k measurements
(ICC(A4, k))'°® to assess the rank order consistency.

Simulation 3b—correlation between congruency effect and
incongruent trial performance. Using the same simulation method
described above with Hedge et al.s (2018) data®’, we also examined
the correlation between the congruency effect and performance on
incongruent trials (Extended Data Fig. 2; reaction time and per cent
error ((1-accuracy) x 100); both measures onincongruent trials were
expected to positively correlated with congruency effect). For this
analysis, 500 participants were simulated, and for each participant,
3,200 trials were sampled to calculate the mean. These amounts
were expected to give highly precise individual estimates. The cor-
relation was calculated with Kendall’s rank correlation coefficient
and ICC(4, k).

Simulation 3c—effects of trial number on drift-diffusion mod-
elling of inhibitory control. Using the same simulation method as
simulation 3a, we examined how trial number affects the reliability of
drift-diffusion modelling parameters (Supplementary Fig. 12). Due
to its simplicity, ease of implementation and suitability for relatively
sparse datasets, we performed EZ-diffusion modelling®. We simulated
100 participants and calculated the cross-participant reliability of the
EZ-diffusion modelling parameters: drift rate, boundary separation
and non-decision time. The key manipulation was to systematically
increase the number of trials (50,100,200,400,800,1,600 and 3,200).
Sampling was done twice for each participant to assess test-retest reli-
ability, using ICC(A, k). We compared these results with the reliability of
the congruency effect reaction time and congruency effect accuracy.

Simulation 3d—effects of trial number on factor analyses of inhibi-
tory control. We conducted CFA using simulated databased on Hedge
etal’s*flanker and Stroop task data (Extended Data Fig. 9). Similar to
EZ-diffusion modelling, the goal was to observe how the number of
trials per participant affects the reliability of the factor analysis. As a
preliminary analysis, we ran P-technique factor analysis using the EPIC
dataset toinvestigate whether the flanker task, prime-probe task and
Stroop task share alatent factor. The best-fitting solution for six partici-
pantsidentified one factor, while for two participants, the best-fitting
solution comprised two factors. Accordingly, werana CFA onthe three
tasks using amodel containing one latent factor across varying num-
bers of trials per participant. We then simulated data using a method
similar to that described for simulation 3a. While Hedge et al.’s dataset
didnotinclude a prime-probe task, simulations using only the flanker
and Stroop tasks resulted in some simulated participants lacking a
shared latent factor. To address this, we simulated prime-probe task
databased onacombination of Hedge et al.s Stroop task and the EPIC
dataset’s prime-probe task: the group mean and standard deviation
were derived from the EPIC dataset, while individual distributions were
based on Hedge et al.s Stroop task data.

Inadditionto trial number, we manipulated cross-task correlation
(atlevelsof 0.1,0.4,0.6,0.8 and 1) by constructing three-dimensional
probability distributions of the congruency effects across the three
tasks. For the EZ-diffusion modelling simulation (simulation 3c),
correlated samples for congruent and incongruent trials were
generated separately by constructing amultivariate probability density
that reflects the linear correlation between congruent and incongru-
ent trials. By contrast, for this CFA simulation, a congruency effect
value was simulated from the three-dimensional probability density,
which captures the cross-task correlations among the three tasks.
The CFA across the three tasks of 100 simulated participants was
repeated twice to compute the test-retest reliability, and this process
wasrepeated 100 times to obtain each participant’smeanscores. The
resulting reliability of each task’s congruency effect and factor score
was then plotted.
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Simulation 4—comparing the traditional frequentist and the
Bayesian approaches. We used WinBUGS and R packages (R20pen-
BUGS and Ime4) to compare the frequentist (non-hierarchical) and
the Bayesian hierarchical modelling estimates of the congruency
effect across several different conditions (Extended Data Fig. 10).
Twenty-five replications of reaction time data were simulated per
condition, based on flanker task data from the work of Robinson and
Steyvers*. For the different conditions, we manipulated the number of
trials (50,100 and 500) and the ratio of within-participant variance to
between-participant variance (5,10,20 and 40). These two factors were
fully crossed to produce 12 total conditions. The number of simulated
participants was fixed at 100. After the 25 datasets were simulated, we
conducted multilevel modelling, using the Ime4 package, to obtain
unbiased estimates of between-participant variability in the congru-
ency effect and trial-level variability in reaction time within partici-
pants. Next, using WinBUGS, Bayesian estimates of individual-level
congruency effects were obtained. The unbiased estimates from
multilevel modelling were used for the variance terms in the priors.
For the frequentist non-hierarchical approach, individual-level con-
gruency effects were estimated by simply calculating mean reaction
time separately for congruent and incongruenttrials, then taking the
differenceinthese mean values for each participant. We evaluated the
precision of the estimates with the mean absolute deviation between
the generated (true) congruency effect and the estimated congruency
effect values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedatathat supportthe findings of this study are available via OSF at
https://osf.io/jk9nb (https://doi.org/10.17605/0OSF.I0/JK9NB).

Code availability

The code for the experimental tasks and data analyses conducted in
this study is available via GitHub at https://github.com/GrattonLab/
LeeSmith_EPIC.
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Extended Data Fig. 1| Rank order matrices of the congruency effect.

a) reaction time and b) accuracy from the EPIC data. The grand mean congruency
effect for each participant across all sessions was calculated with the same
exclusion criteria applied to remove outliers as for plotting Fig. 2. Then, we
ranked for each task with participants exhibiting larger congruency effects
ranked higher. Finally, we plotted these matrices to show the rank consistency

B) Congruency Effect Accuracy
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across the three tasks. Despite our small sample, we observe notable consistency
in the ranks, with the same or highly similar ranking across the three tasks
(for example, EPIC 05 and 08 for reaction time, and EPIC 03, 04, 08 and 10 for
accuracy). For both reaction time and accuracy, all participants show either the
same rank or a difference of just one rank for at least two tasks, suggesting that
rank orders across tasks can be consistent with extensive sampling.
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Extended Data Fig. 2| Rank order consistency between congruency effect
and incongruent trial performance. We used Robinson and Steyvers™’ data
(aandd), Hedge et al.s* data (b and e) and simulated data with extended
sampling (c and f). We simulated Hedge et al.'s empirical data by extending to
500 participants and 3,200 trials to resolve sampling variability (see Methods for
details). To address the low reliability of the congruency effect, one proposed
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solution is to substitute it with performance onincongruent trials. However, this
raises animportant question of whether they measure the same construct. Our
reaction time results demonstrate that, although they are correlated, the rank
orders canstill differ. Note that even with extended sampling, Kendall’s 7= 0.37
(ICC=0.70). Interestingly, however, the rank order is more consistent for percent
error results, yielding Kendall’s 7= 0.65 (ICC = 0.91) with extended sampling.
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Extended DataFig. 3 | Performance improvement in the congruency effect
over time. a) reaction time and b) accuracy in the EPIC data. Each data point is
the mean of three consecutive sessions, which yields approximately 1,000 trials

when concatenated (1,200 for flanker, 1,152 for prime-probe and 864 for Stroop).

This sampling was to minimize session-level variability (see Fig. 2 violin plots for
variability across sessions). Notably, in reaction time data, congruency effects

decreaseinall three tasks, but the decrease is most prominentin the flanker task.

Variation also exists across participants. It is possible that these effects observed
over the course of sessions may be attributable to the time intervals between
sessions, as Robinson and Steyvers™’ data do not show these effects. To address
these effects, we regressed them out using a linear model (see Extended Data
Fig. 6 for with and without linear regression). For accuracy, the trajectories seem
relatively random, not displaying obvious linear trends as in reaction time data.
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Extended Data Fig. 4 | Assessing performance impairment across sessions. butaround relatively small differencesin close to ceiling performance (all
This figure shows connected dot plots for performance on all trials (congruent participants showed greater than 89% accuracy in all sessions). Notably, while
andincongruent) combined, presented in terms of a) reaction time and b) some participants show faster reaction times in later sessions (for example, EPIC
accuracy across sessions of the EPIC data. For reaction time, incorrect trials and 03inall three tasks), this would more readily be interpreted as performance
outlier (defined as those more than three standard deviations from the mean) improvement due to practice, as accuracy is also higher for later sessions.
were removed to calculate the mean for each session. We examined whether In conclusion, although tested extensively across 18 sessions, we do not see
performance deteriorated in later sessions (that is, longer reaction times or substantial evidence for performance impairment across sessions in our dataset.
poorer accuracy). The results show no systematic evidence of performance This may be because our participants were a relatively homogeneous set who
deterioration, as overall reaction time is generally consistent across sessions were highly motivated to participate in the study.

(except for EPIC10). Overall accuracy shows some day-to-day variability,
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Extended Data Fig. 5| Assessing performance impairment within sessions.
This figure compares the first and second halves of the sessions of the EPIC data.
Each session was divided into halves and the overall mean a) reaction time and b)
accuracy were calculated for the 18 sessions. The goal was to examine whether
any deterioration in performance within a session would occur, possibly due to
factors such as boredom or fatigue, from testing approximately 400 trials per
task (400 for flanker, 384 for prime-probe, and 432 for Stroop). Note that our
participants performed two tasks in each session, so they were tested for about
800 trials inless than an hour. Each dotted line corresponds to one participant’s
mean, and the bar graphs show the group average of all participants. Except for
the prime-probe task reaction time, overall, reaction time is higher, and accuracy

is lower for the second half. However, statistical analyses (repeated measures
ANOVA with session half as a variable separately conducted for each task and
measure), show that only the difference between the two halves is significant for
the Stroop task reaction time (with Bonferroni correction), F(1,7) =13.25,
p<0.001,MSe=23.92, rzf, = 0.65.Note that the Stroop task had the most trials.
For the flanker and prime-probe tasks, we did not observe significant
performance degradation in the second halves of the sessions, Fs <1.72.In sum,
testing about 800 trials in a session, at least in our dataset, does not show
significant performance degradation in the latter half of each session, although
some (below threshold) impairment effects may be present. These results argue
for not extending a single session to longer than the hour collected in this dataset.
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Extended DataFig. 6 | Before and after linear regressions on the congruency
effect. Related to Extended Data Fig. 3 that decreases in reaction time congruency
effect are observed in the EPIC data, we regressed these effects with alinear
model before implementing our two methods to draw stability curves. As the
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improvement effects are most prominent in the flanker task, the difference
between before and after regression is also most noticeable for the flanker task.
Notably, all participants exhibited congruency effects throughout the extent of
data collection even when regressing out the improvement effects.
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Extended Data Fig. 7 | Bias can be corrected but the imprecision may still be
high without sufficient trials. a) Trial noise in congruency effects estimated with
mean squared error as a function of number of trials. b) Sample versus corrected
(by accounting for trial noise in the estimate) between-participant standard
deviation. For both plots, the line indicates the mean of 1,000 simulations using
Robinson and Steyvers™’ data, and the shaded error bar is the 95% confidence
interval. The goal here is to examine whether correcting between-participant
standard deviation can be an effective strategy to get stable results when the
number of trials is limited. We showed in Fig. 4 that the inflation of sample
between-participant standard deviation can be rectified with sufficient trial
sampling above 1,000 trials. Another effective way to correct the inflationis to

separate trial noise from the sample between-participant variability*”. Sample
2
between-participant variance takes the following equation, 2% + aﬁ, where aé is

2
true between-participant variance and 2% is two times the within-participant

variance (mean squared error) divided by trial number. We solved this
equation for true between-participant variance (the ‘corrected’ value) and
plotted it as a function of number of trials. We simulated data using Robinson
and Steyvers’ data parameters and sampled 25, 40, 50,100, 200,400 and
800 trials per condition, each for 1,000 times. We then plotted the mean

and 95% confidence interval of the 1,000 simulations. Results show that
correcting between-participant variability by accounting for trial noise in
congruency effects effectively reduces bias/inflation and may be a promising
approach that could be widely adopted. However, as the error bars show,

the imprecision s still high with few trials. Thus, even with this correction
method, agood estimate requires sufficient trials per participant. Note also
that while this approach will help to reduce bias in estimates of
between-participant variability, it does not give precise individual-level
estimates of the congruency effect.
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Extended Data Fig. 8 | Reliability of EZ-diffusion modelling with increased
within-participant data. a) Split-halfreliability of the EZ-diffusion modelling
asafunction of number of trials using Hedge et a,'s** empirical data. This plot
corresponds to Fig. 8, which used Robinson and Steyvers™ data instead. The
scatter plots and the ICCs of the congruency effect reaction time, accuracy,

drift rate, nondecision time and boundary separation are shown. All results are
difference scores between congruent and incongruent conditions. We increased
the number of trials (50,100, 200 and 400) sampled from the data to examine

the effect of trial size on reliability. Results show that ICC increases with more
trials, particularly for drift rate, consistent with Fig. 8. Below shows bootstrapped
95% confidence interval of the ICC using b) Robinson and Steyvers’ dataand c)
Hedge et al’s data to observe their precision across different number of trials.
The orange lines indicate the ICC and the coloured shaded error bars are the 95%
confidence interval of the ICC. The results show that ICC increases with more
trials as well asits precision.
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Extended Data Fig. 9| Reliability of confirmatory factor analysis across

trial numbers. The data were simulated using the flanker task and Stroop

task data from Hedge et al.*?, along with the EPIC prime-probe task data (see
Methods for details on the simulation). The ICCs of the factor scores are plotted
across increasing numbers of trials, compared to the ICCs of the individual

task congruency effects. Based on P-technique factor analysis on the EPIC
dataset’s three tasks, we ran confirmatory factor analysis (CFA) on the simulated

data, assuming one shared factor. We also manipulated the level of cross-task
correlations when simulating the three task datasets (r= 0.1,0.4, 0.6, 0.8 and

1). Theresults show that the test-retest reliability of factor scores improves
withmore trials, suggesting that CFAis also influenced by trial sampling size.
Additionally, reliability critically depends on cross-task correlation; when cross-
task correlation is high, the reliability of the factor score exceeds that of the
individual task congruency effects.
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Extended Data Fig. 10 | Comparing frequentist non-hierarchical and
Bayesian hierarchical approaches. To determine the extent to which a Bayesian
hierarchical approach may or may not produce more precise congruency
effect estimates than a frequentist non-hierarchical approach, we carried out
asimulation, using Robinson and Steyvers™’ data, and compared parameter
recovery between the two methods. Specifically, we evaluated the mean absolute
deviation between the generated (true) congruency effect values and the
recovered (estimated) congruency effect values. Mean absolute deviation values
were then compared between the hierarchical Bayesian and non-hierarchical
approaches. The manipulated factors in the simulation include the number of
observed trials (50,100, and 500) and the ratio of within-participant variance
to between-participant variance, indexed as follows: A) 5, B) 10, C) 20 and D)
40. These factors were fully crossed, producing 12 total conditions. What is
noteworthy is that there is an interaction effect with respect to the impact
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oftrial number and within-participant variance on the hierarchical Bayesian
improvement in mean absolute deviation. The hierarchical Bayesian approach
offers adramatic improvement when the number of trials is small and the
within-participant variance is large. However, the precision of the hierarchical
Bayesian and non-hierarchical estimates converge as trial number increases
and within-participant variance decreases. By 500 trials, regardless of within-
participant variance, there is virtually no difference in the precision of the
estimates between the two methods. Note, additionally, that it requires at least
500 trials to obtain precision estimates in the target 4 to 9 ms range. Thus, if one’s
goalis to obtain estimates with a degree of precisionin this target range, then a
hierarchical Bayesian approach will not provide any additional benefit beyond a
non-hierarchical approach. However, if resources are limited and one must settle
for anon-optimal number of trials, a hierarchical Bayesian approach will provide
utility.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Software and code

Policy information about availability of computer code

Data collection  Task data were collected using custom codes written in Matlab (2018b) and Psychtoolbox 3.0.16 (available at https://github.com/GrattonLab/
LeeSmith_EPIC). Survey data were collected with Qualtrics.

Data analysis Data were analyzed using Matlab (2021b), WinBUGS (1.4), and R (4.3.2). All analyses codes are available at https://github.com/GrattonLab/
LeeSmith_EPIC.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The main dataset collected for this project is available at https://osf.io/jk9nb.
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Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We reported the sex of the participants in the manuscript. We did not conduct any sex- or gender-based analyses because
our focus was on how inhibitory control measures may be stable or changing within an individual. Participants reported their
sex in a Qualtric survey. The disaggregated sex information is available in the source data on the OSF platform (https://osf.io/
jk9nb).

Reporting on race, ethnicity, or  We collected data on the race and ethnicity of the participants, but did not use these variables, as our focus was on
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other socially relevant examining how task measures remain consistent or fluctuate within individuals.

groupings

Population characteristics See above.

Recruitment All participants were students at Northwestern University, which may introduce biases due to the recruitment of young,

healthy adults from the same region with similar educational backgrounds. However, we demonstrate in the manuscript that
our findings are generalizable, as they were replicated in more heterogeneous public datasets, including hundreds of
participants from a broader age range (Robinson & Steyvers, 2023; Hedge et al., 2018). Potential participants from the
Northwestern University Psychology Department laboratories were approached by study team members and invited to take
part in a multi-week study on cognitive control.
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Robinson, M. M., & Steyvers, M. (2023). Linking computational models of two core tasks of cognitive control. Psychological
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Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable
individual differences. Behavior research methods, 50, 1166-1186.
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Study description The study examined the number of trials needed to obtain maximally precise congruency effects. Multiple datasets and simulations
show that extensive within-subject sampling is needed to achieve stable estimates of congruency effects.

Research sample The participants in our main dataset were undergraduate and graduate students from Northwestern University (mean age = 25
years; age range: 18-30; five females, four males). This sample was accessible at the time the study was initiated during the COVID-19
pandemic. While this sample may not be fully representative of the general population due to its composition of young, healthy
adults, it was selected for its ability to fully engage in our extensive testing sessions. To enhance the generalizability of our findings,
we also utilized two publicly available datasets: Robinson and Steyvers (2023) and Hedge et al. (2018). Robinson and Steyvers
collected online data from 485 participants via the Lumosity platform (mean age = 58; 66% female, 29% male; the rest did not report
gender). Hedge et al. collected in-person data from 112 participants (mean age = 20.05; 15 males).
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Robinson, M. M., & Steyvers, M. (2023). Linking computational models of two core tasks of cognitive control. Psychological review,
130(1), 71-101.

Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual
differences. Behavior research methods, 50, 1166-1186.

Sampling strategy We did not conduct a formal power analysis for this exploratory study. We were inspired in part by the Midnight Scan Club dataset
(Gordon et al., 2017). This is a dataset comprised of only 10 subjects with a high level of within-subject data. The aim for the EPIC
dataset was also to collect as much data per task from our participants as reasonably possible, making it a deep as opposed to a big
dataset. The dataset was based on a sample of convenience and is comprised of graduate and undergraduate students. Due to the
small sample size and the convenience sampling we also employed two large public datasets (Robinson & Steyvers, 2023; Hedge et
al., 2018) to replicate the findings from our dataset.
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Data collection Participants were either tested in the lab or at home, where they took the lab computer with them. During the lab sessions, only the
participant and the researcher were present in the testing room. Participants working from home were instructed to work alone in a
quiet environment. They were seated approximately 60 cm from an LCD monitor, which had a resolution of 1440x900 pixels and a
refresh rate of 60 Hz. All experiments were programmed using MATLAB (2018b) and Psychtoolbox (3.0.16), and responses were
collected via a standard computer keyboard. The researcher was not blinded to the study hypotheses, but the study was exploratory
in nature and did not have firm hypotheses; the primary goal was to determine the number of trials needed to obtain maximally
precise estimates of the congruency effect. Since the study did not involve experimental conditions (e.g., placebo vs. treatment),
blinding of the researcher to such conditions was not relevant.
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Timing The start date of the first participant's data collection was 2020/5/18 and the end date of the last participant's data collection was
2022/3/8.
Data exclusions We collected data from nine participants, but one was excluded due to an issue related to key release, producing consecutive error

trials in later sessions.

We also used two public datasets to replicate findings from the main dataset. Robinson and Steyvers’ (2023) data originally included
495 participants. The following excerpt from our manuscript’s supplementary methods explains the participant exclusion procedure
for this dataset:

“We excluded participants who had below 70% overall accuracy in either experimental conditions (congruent or incongruent) or who
had 0% accuracy in any session, resulting in a total of 448 participants. We further selected participants with more than 2,500
correctly responded trials, resulting in 185 participants for our final analyses.”

Details regarding the data collection procedures for Robinson and Steyvers’ (2023) dataset can be found at the following link:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10257386/

Hedge et al.'s (2018) dataset originally had 112 participants. The quoted text from our manuscript’s supplementary methods explains
the participant exclusion procedure for this dataset as follows:

“Five participants with only one session were excluded. ... Six participants, who had below 70% accuracy in either session, were
excluded from analyses of both tasks, resulting in 101 participants."

Details regarding the data collection procedures for Hedge et al.'s (2018) dataset can be found at the following link:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5990556/
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