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Behavioral/Cognitive

Evidence for Abstract Codes in Parietal Cortex Guiding
Prospective Working Memory
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"Department of Psychology, Florida State University, Tallahassee, Florida 32304 and *Department of Psychology, University of Miami, Coral Gables,
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The recent past helps us predict and prepare for the near future. Such preparation relies on working memory (WM) which actively
maintains and manipulates information providing a temporal bridge. Numerous studies have shown that recently presented visual
stimuli can be decoded from fMRI signals in visual cortex (VC) and the intraparietal sulcus (IPS), suggesting that these areas sustain
the recent past. Yet, in many cases, concrete, sensory signals of past information must be transformed into the abstract codes to guide
future cognition. However, this process remains poorly understood. Here, human participants of either sex used WM to maintain a
separate spatial location in each hemifield wherein locations were embedded in a learned spatial sequence. On each trial, participants
made a sequence-match decision to a probe and then updated their WM with the probe. The same abstract sequence guided judg-
ments in each hemifield, allowing the separate detection of concrete spatial locations (hemifield-specific) and abstract sequence posi-
tions (hemifield-general) and also tracking of representations of the past (last location/position) and future (next location/position).
Consistent with previous reports, concrete past locations held in WM could be decoded from VC and IPS. Moreover, in anticipation
of the probe, representations shifted from past to future locations in both areas. Critically, we observed abstract coding of future
sequence positions in the IPS whose magnitude related to speeded performance. These data suggest that the IPS sustains abstract
codes to facilitate future preparation and reveal a transformation of the sensory past into abstract codes guiding future behavior.
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Significance Statement

To act efficiently, we must use the recent past to prepare for what comes next. For this purpose, working memory (WM) is
critical. Although substantial research has shown that WM retains recently presented sensory information, preparation for
the future involves abstraction wherein shared meaning is aggregated while superfluous sensory details are discarded. The
mechanisms underlying this process remain unclear. Analyzing functional MRI signals in the intraparietal sulcus (IPS),
we found that distinct sensory states with shared predictive meaning were initially maintained in a sensory-like fashion
but over time, became aggregated indicative of abstraction. Abstraction was associated with behavioral efficiency highlighting
Kits role in preparation. These findings reveal neural mechanisms supporting the transformation from past to future in WM.

)

Introduction

Working memory (WM) refers to the maintenance and manip-
ulation of information no longer available to the senses
(Baddeley, 1992; Curtis and D’Esposito, 2003; D’Esposito and
Postle, 2015; Nee and D’Esposito, 2018). WM is central to
higher-level cognition as many of our behaviors require extend-
ing the recent sensory past to prepare for the near future (Fuster,
1990, 2001; Rainer et al., 1999; Nobre and Stokes, 2019). Despite
its importance for future-oriented cognition, most WM studies
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focus on how the recent past is maintained. Numerous studies
have revealed that visual sensory codes can be decoded from
fMRI activation patterns in occipital and parietal cortices
(Harrison and Tong, 2009; Serences et al.,, 2009; Christophel
et al, 2012, 2015; Albers et al., 2013; Sprague and Serences,
2013; Sprague et al., 2014, 2016; Ester et al., 2015; Bettencourt
and Xu, 2016; Lorenc et al., 2018; Rademaker et al., 2019;
Li and Curtis, 2023). Such findings have given rise to the sensory
recruitment hypothesis which states that WM is supported by the
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sustained maintenance of sensory information in those same
sensory cortices involved in initial perception (Pasternak
and Greenlee, 2005; Serences, 2016; Scimeca et al., 2018;
Sreenivasan and D’Esposito, 2019).

However, when preparing for the future, we are often guided
by nonsensory codes. Consider finding a friend in a grocery store
who has a common shopping routine (e.g., produce then bread
then deli counter). If upon arriving at the store, they text you
that they are getting produce, you might head toward the bread
aisle in anticipation of where they will be by the time you walk
over. This example illustrates that prospective actions are often
guided by abstract codes. Abstraction is a process by which
shared features are aggregated (Ho et al.,, 2019; Courellis et al.,
2024), facilitating generalization and knowledge transfer across
contexts (Badre et al., 2010; Collins and Frank, 2013; Badre,
2024). For example, knowledge of your friends’ shopping routine
(abstract code) may also help you find them in a different grocery
store (new context). Despite the importance of abstraction, there
is a critical gap in our understanding of the abstract representa-
tions that reside in-between sensation and action which prospec-
tively and flexibly guide cognition.

Abstract coding increases with synaptic distance from primary
cortices (Mesulam, 1998; Brincat et al., 2018). For visuo-spatial pro-
cessing, the intraparietal sulcus (IPS) is downstream of visual cor-
tical areas of the occipital cortex (e.g., V1-V4; VC). Although visual
WM is often decoded similarly in VC and IPS (Christophel et al,
2012; Sprague and Serences, 2013; Sprague et al., 2014, 2016),
some evidence suggests that IPS WM representations are more
robust to distraction (Bettencourt and Xu, 2016; Lorenc et al,,
2018; Rademaker et al,, 2019). Abstraction is thought to result in
a distractor-resistant, stable, low-dimensional coding format
(Murray et al., 2017; Rademaker et al., 2019). Hence, we reasoned
that abstract codes that facilitate prospection would be relatively
more prominent in the IPS than VC.

This study used fMRI to investigate the mechanisms underly-
ing using the recent past to prepare for the future. Human partic-
ipants performed a sequence-matching task which probed
whether a presented spatial location followed the last spatial loca-
tion in a predefined sequence (Fig. 1). The sequence (Fig. 1a) was
abstract in that it generalized to spatial locations in either hemifi-
eld. Moreover, employing a sequence afforded using the recent
past (most recently presented location) to prepare for the near
future (next location in the sequence). Through this task, we
examined concrete (spatial location), abstract (sequence posi-
tion), retrospective (previous location/position), and prospective
(next location/position) coding in visual and parietal cortices.
We predicted that both IPS and VC would show initial evidence
of concrete, retrospective coding consistent with past works.
However, we anticipated the emergence of abstract and prospec-
tive coding in the IPS consistent with a top-down code to guide
future expectations. This result would provide evidence for
abstract codes guiding prospective WM.

Materials and Methods

Participants. Twenty-two participants were recruited from the
Tallahassee area for this experiment. All participants underwent an ini-
tial screening process to ensure that they understood and could ade-
quately perform the task. Informed consent was obtained according to
the guidelines set forth by the Office for Human Subjects Protection
and Florida State University Institutional Review Board. For the experi-
ment, a total of three scanning sessions were planned. Two participants
were unable to tolerate the scanner environment, and one participant
was lost due to a scheduling conflict. An additional four participants
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were removed from the study following the first scanning session due
to insufficient data quality (e.g., two for poor task accuracy, two for exces-
sive head motion). These data were excluded from further analyses. The
remaining 15 participants (age range, 18-23; mean age, 20.1; 10 female)
were analyzed for this report. One participant did not complete the last
scanning session due to a technical issue with the remaining participants
completing all three sessions.

fMRI experimental design. In the fMRI scanner, participants per-
formed a sequence working memory task. In the task, participants were
required to maintain two spatial locations, one in each visual hemifield,
each of which were drawn from a five-location sequence tracing a star
(Fig. 1). These stimuli were used as references for the probes. On each trial,
a cue was presented at the center of the screen for 500 ms, pointing to either
the left or right visual hemifield, indicating that an upcoming probe would
appear in that respective visual hemifield (task-relevant visual hemifield).
For all but the first cue, cues were preceded (pre-cue delay) and followed
(post-cue delay) by 7500 ms of fixation. After the post-cue delay, a probe
was presented in the task-relevant visual hemifield for 500 ms.
Participants were asked to determine whether the spatial location of the
currently presented probe sequentially followed the reference (i.e., the spa-
tial location of the last stimulus presented in the same visual hemifield). The
spatial location of the probe then was used as the reference for the next
probe in the same visual hemifield. Thus, the reference in the probed
hemifield was updated in each trial.

Half of the probes followed the reference in the sequence, thereby
requiring a “match” response. “Non-match” probes were pseudorandomly
and equally drawn from the three spatial locations remaining after exclud-
ing the sequence “match” and the reference (i.e., there were no stimulus
repeats). Trials were equally distributed to cue the left and right visual
hemifields and to require even numbers of switches and repeats of the visual
hemifield of the preceding trial. Each run began with the presentation of
two location stimuli for 1,500 ms which served as the initial reference loca-
tions. A delay of 2,500 ms separated the initial stimuli from the first cue.
During the experiment, participants were asked to fixate their gaze on a
fixation cross at the center of the screen and not move their eyes.
Adherence to these instructions was monitored by eye tracking. Fourteen
out of 15 participants completed three scanning sessions, while one partic-
ipant completed only two scanning sessions due to a technical issue. Each
scanning session was carried out on separate days. Each scanning session
consisted of four experimental runs and 50 trials per experimental run.
There was a short break between experimental runs.

Stimuli and apparatus. The experiment was programmed with
E-Prime software version 2.0 (Psychology Software Tools). The probe
stimulus was a blue circle with a diameter of ~2°. Stimuli were presented
between 5.5 and 15.25° of visual angle left and right and between 3.32 and
4.68° of visual angle above and below a central fixation point.

MRI acquisition. MRI data were collected on a Siemens 3T Prisma
with a 32-channel head coil. The participant observed visual stimuli in
the scanner using a mirror attached to the head coil, which reflected the
visual stimuli onto a projection screen. Responses were recorded using a
four-button MR-compatible button box (Current Designs), with partici-
pants using the index finger of each hand to input their responses.

Functional imaging data were obtained using an EPI sequence pro-
vided by the Center for Magnetic Resonance Research (CMRR) at the
University of Minnesota: voxel dimensions of 2x2x2mm; TR,
2,000 ms; TE, 33.8 ms; flip angle, 45% FOV, 192 mm?; multiband factor,
4. Prior to each functional scan, four dummy scans were conducted to
ensure image stabilization. Phase and magnitude images at the same
resolution of the functional images were acquired to assess and correct
for magnetic field inhomogeneity. Additionally, a high-resolution
T1-weighted MPRAGE image was collected for spatial normalization
(384 x 384 x 256 matrix of 0.667 mm3 isotropic voxels; TR, 1,840 ms;
echo time, 2.9 ms; flip angle, 9°).

MRI data preprocessing. Preprocessing on image data was done in
SPM12 (https://www.filion.ucl.ac.uk/spm/) unless otherwise specified.
DICOM format was converted into NIfTT format. The origin of all
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images in each participant was manually adjusted to the anterior com-
missure. Functional image data underwent spike correction to mitigate
the influence of artifacts using AFNI’s 3dDespike routine (http:/afni.
nimh.nih.gov/afni), as well as slice timing correction for each run,
head motion correction via a six-parameter rigid body transformation,
and unwarping and correction of motion-by-susceptibility distortions
using the FieldMap toolbox (Andersson et al., 2001). Based on the
realignment parameters, linear, squared, differential, and squared differ-
ential movement parameters were calculated (24 in total; Lund et al.,
2005). These parameters were regressed out of the functional images,
and the resultant residuals were high-pass filtered at 1/128 Hz. These
data were used for all described analyses.

Structural image data were coregistered to the functional image data.
Then, segmentation was performed on structural image data to acquire
gray and white matter probability maps (Ashburner and Friston, 1997)
from which spatial normalization warping to and from the MNI template
was calculated.

ROI selection. We selected the left and right intraparietal cortex (IPS)
along with the left and right visual cortex (VC) as the regions of interest
(ROIs) given their role in maintaining working memory (Harrison and
Tong, 2009; Serences et al., 2009; Ester et al., 2015; Bettencourt and
Xu, 2016; Lorenc et al., 2018; Rademaker et al., 2019). ROI masks were
created using a probabilistic atlas (Wang et al., 2015) with a 90% proba-
bility threshold. VC ROIs were created by combining V1v, V1d, V2v,
V2d, V3v, V3d, and hV4. IPS ROIs were created by combining IPSO0-5.
These ROIs were warped to native space for each individual.

Multivariate fMRI analyses. The BrainIAK toolbox implemented in
Python was used to conduct decoding analyses (Kumar et al., 2020). All
decoding analyses were performed on preprocessed BOLD responses
from the ROIs of each participant. To appropriately balance factors for
classification, consecutive pairs of runs were concatenated. The concate-
nated BOLD data of each ROI were temporally z-scored to ensure that
voxel activities were scaled to the same range. Only correct trials were
analyzed. After removing error trials, we equalized the number of trials
of each spatial location in each run to match the smallest count among
them by randomly sampling the larger number of trials of each spatial
location resulting in ~8 trials per concatenated run per location on
average. Such random sampling and cross-validation were repeated
1,000 times.

To train and test a classifier (L2-regularized, multinomial logistic
regression), we implemented a leave-one-pair-out cross-validation pro-
cedure. The decoding outputs of each participant were calculated as
the average decoding outputs across all iterations. During each cross-
validation iteration, we applied univariate feature selection using an
ANOVA (f-classif function in the scikit-learn Python library;
Pedregosa, 2011) with a threshold alpha level of 0.05 on the training
data. The features selected based on the training data were used on the
testing data. Since this procedure resulted in a variable number of fea-
tures as a function of ROI and time point, we repeated the analyses using
a fixed number of features (300, which approximated the lower bound of
the number of features selected by the above procedure) which produced
the same patterns of results as reported in the main text (Fig. S6) indicat-
ing that the results are robust to the specifics of feature selection. The L2
penalty was the value of 1, which was used to train the classifier. For the
decoding analysis, we excluded the initial trial of each run as the timing
and visual presentation of this trial differed from the others.

Multivariate fMRI analyses: temporal generalization decoding
analysis. Temporal generalization decoding analysis (King and
Dehaene, 2014) was conducted to assess transformations of representa-
tions over time. Classifiers were trained to classify 10 distinct categories
representing the spatial locations of stimuli (five locations in each hemifi-
eld) based on the average fMRI activation patterns over the last two time
points of the post-cue delay period (12 and 14 s post-stimulus onset).
Since we anticipated that participants would form expectations of
to-be-probed location, the classifier was trained using the labels of the
location corresponding to a match probe. Then, the trained classifier
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was tested to classify each TR of the independent testing data (8
TRs in total; from 0 to 14 s from the onset of the probe). The temporal
generalization decoding analysis produced classifier evidence corre-
sponding to each of the 10 spatial locations at each time point. We spe-
cifically tracked evidence for the retrospective-relevant (“Retro-rel”),
retrospective-irrelevant (“Retro-irrel”), prospective-relevant (“Pro-rel”),
and prospective-irrelevant (“Pro-irrel”) locations (Figs. 1c, 2a). During
the pre-cue delay, the classifier evidence for the just-probed spatial loca-
tion was categorized as “Retro-rel,” and the last probed spatial location in
the uncued hemifield was categorized as “Retro-irrel.” During the post-
cue delay of the repeat condition, the classifier evidence for the next
spatial locations of “Retro-rel” and “Retro-irrel” in the sequence were
categorized as “Pro-rel” and “Pro-irrel,” respectively. In the switch con-
dition, the classifier evidence corresponding to the next spatial locations
of “Retro-irrel” and “Retro-rel” in the sequence were categorized as
“Pro-rel” and “Pro-irrel,” respectively. For each time point, classifier
evidence for each of the four categories of interest were averaged across
trials for each subject and submitted to statistical analysis.

Prior work has suggested that representations during WM and per-
ception are distinguishable (Rademaker et al., 2019; Lorenc et al., 2020;
Chunharas et al., 2025). Hence, the analyses above focused on training
the very end of the post-cue delay to maximize separation from sensory
signals and hone in on mnemonic codes (Tamshchinina et al., 2021; see
also Riggall and Postle, 2012; Myers et al., 2015; Rademaker et al,
2019). For completeness, we repeated the procedures above using the
last two time points of the pre-cue delay (4 and 6 s post-stimulus onset)
to train classifiers. This timing corresponds to the peak of hemodynamic
signals following a stimulus allowing the ability to determine the extent
to which the results reflecting more sensory-like signals show the same
patterns. In this case, the classifier was trained using the labels of the just-
probed location. These data are reported in Figure S4a. We note that due
to the circular nature of the sequence, the classifier training labels are
somewhat arbitrary. That is, we could alternatively have used prospective
training labels during the pre-cue delay as we did with the late delay
above (i.e., assuming that expectations for the next location in the
sequence dominate the signals during the pre-cue delay). In this case,
we would not expect further transitions through the sequence (e.g., if
the training label is R1, we would not expect to see evidence for R2 at
any point during the trial). However, during testing, we observed dimin-
ished classifier evidence of the training-matching labels and increased
classifier evidence of labels matching the next location in the sequence,
thus validating our assumptions and procedure (Fig. S4a).

Training and testing were performed separately for each of the four
ROIs (left and right IPS and VC). Given similarity in the results in
each hemifield, left and right hemifields were averaged together to sum-
marize a given brain area (e.g., left and right IPS results were averaged to
characterize the IPS).

Multivariate fMRI analyses: cross-visual hemifield decoding analysis.
Cross-visual hemifield decoding analysis was performed by training a
classifier on the five sequence positions presented on the one visual
hemifield [e.g., the left (right) visual hemifield] and testing the classifier
on the five sequence positions presented on the other visual hemifield
[e.g., the right (left) visual hemifield]. Decoding was conducted in a time-
resolved manner, involving training and testing the classifier within the
same TR. The label at each TR during the pre-cue delay was based on the
just-probed stimulus, while the label at each TR during the post-cue
delay was based on the last probed stimulus in the cued hemifield.
Notably, since each TR was trained and tested independently from other
TRs, this analysis is agnostic to whether the same position is being
decoded across TRs or whether a systematic shift (e.g., from the last
probed position to the next position in the sequence) occurs at some
point and when. Because of this, whether the position is labeled as the
just/last probed position (retrospective) or the next position in the
sequence (prospective) is arbitrary.

Representational similarity analysis. We conducted a representa-
tional similarity analysis (RSA; Kriegeskorte et al., 2008) on the prepro-
cessed BOLD data to examine the transformation of the neural
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representation of WM across time points. To setup the data for RSA,
consecutive pairs of runs were concatenated in the same way as in the
decoding analyses. Then, data were split into training and testing sets
by using a leave-one-pair-out-cross-validation procedure. For each iter-
ation of the cross-validation, univariate feature selection was performed
using an ANOVA with a threshold alpha level of 0.05 on the training data
(note similar patterns of results were obtained by fixing the number of
features at 300; Fig. S6). The selected features (voxels) were then z-scored
as a collection, followed by z-scoring within each feature. Based on these
normalized features on the training data, we selected samples corre-
sponding to the 10 spatial locations at the last two time points of the
post-cue delay (12 and 14 s post-stimulus onset). Then, we calculated
the average value of the selected samples for each spatial location to
form the training representations (10 spatial locations). For the testing
data, we used the same features selected on the training data and applied
z-score normalization in the same manner as was done for the training
data. Then, we selected samples corresponding to the 10 spatial locations
for each time point. For each time point, we averaged the patterns of acti-
vation for each of the 10 spatial locations, respectively, to form the testing
representations. Then, for each time point, we calculated the correlation
coefficient among the 10 training representations and the 10 testing rep-
resentations. In other words, eight RSA matrices were formed, one per
time point, showing the representational similarity between the 10 spatial
locations of the training set and the 10 spatial locations in the testing set.
Each RSA matrix was submitted to model-based regression analysis (see
below) for each iteration of the cross-validation.

As we did for the temporal generalization decoding above, we
repeated these procedures using pre-cue delay (4 and 6 s) trained data
for completeness (Fig. S4b,c).

Representational similarity analysis: model-based regression. We per-
formed multiple linear regression (Eq. 1), using the vectorized correla-
tion coefficient RSA matrices described above as the dependent
variable (r) and a set of vectorized model RSA matrices as regressors.
This analysis estimated the unique contribution of each model RSA
matrix to the correlation coefficient RSA matrix. Below describes five
model RSA matrices with details:

1. A matrix representing hemifield spatial attention (SA”) reflecting
similarity among stimuli presented on the same visual hemifield,
but dissimilarity among stimuli presented on the opposite visual
hemifields. Similarity was assigned a regressor value of 1 and dissim-
ilarity was assigned a regressor value of —1. This model captures
broad spatial attention directed to the task-relevant visual hemifield.

2. A matrix representing the spatial location of the reference
(“Concrete Retro”). Here, distance-dependent similarity was
accounted for by computing the distance in visual angle among loca-
tions in the same hemifield. The distance in visual angle between two
locations was scaled by the maximum distance among any two loca-
tions such that a location with itself received a value of 1 and the
maximally distant two locations received a value of —1. Between
hemifield locations were assigned a value of 0 as these dissimilarities
are already captured by the SA regressor. Note that since we assume
that training patterns reflect the prospective location, retrospective
regressors are shifted back one location in the sequence (e.g., a
trained pattern of L2 would be expected to appear as L1 early in
the trial).

3. A matrix representing the location following the reference in the
sequence (“Concrete Pro”). In this case, since we assume that train-
ing patterns reflect the prospective location, this matrix resembles
the identity matrix along with distance-dependent similarity as
above.

4. A matrix representing the abstract sequence position for the refer-
ence stimulus (“Abstract Retro”), wherein the values of the second
model RSA matrix (“Concrete Retro”) were flipped in the horizontal
direction. By doing so, we modeled cross-hemifield generalizability
of the abstract sequence position of the past. Note that the ideal
matrix corresponding to a retrospective abstract sequence position
would be the summation of the “Concrete Retro” and “Abstract
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Retro” matrices as described. However, such a matrix would induce
collinearity with the “Concrete Retro” matrix. Hence, the “Abstract
Retro” matrix as described captures additional variance attributed to
cross-hemifield generalization over-and-above within-hemifield
distance-dependent similarity.

5. A matrix representing the abstract sequence position for the next
location in the sequence (“Abstract Pro”), wherein the values of
the third model RSA matrix (“Concrete Pro”) were flipped in the
horizontal direction. By doing so, we modeled the cross-hemifield
generalizability of the abstract sequence position of the upcoming
future. As with the “Abstract Retro” matrix, this matrix captures
additional variance attributed to cross-hemifield generalization
over-and-above within-hemifield distance-dependent similarity.

r ~ By + BSA + B,Concrete Retro + B;Concrete Pro
+ B,Abstract Retro 4+ fB;Abstract Pro. (1)

For each iteration of the cross-validation procedure, we estimated
beta weights for each time point using the equation (Eq. 1). The beta
weights obtained from the model-based regression across the iterations
were averaged for each participant.

Multidimensional scaling analysis. To visualize the representational
geometry of WM, we performed multidimensional scaling (MDS). For
each subject, ROI, TR, and location, we trained and tested a classifier
to decode each of the 10 spatial locations. Training was performed in
two different manners. First, the classifier was trained and tested on a
TR-by-TR basis as we did with the cross-hemifield decoding analyses.
This allows examination of the dominant geometry over time. Second,
the classifier was trained on the last two time points of the post-cue delay
(12 and 14 s) and was tested at each time point, as we did with the tem-
poral generalization decoding analyses. This allows emphasis on mne-
monic codes. In each case (dominant geometry decoding, mnemonic
code decoding), when testing each of the 10 spatial locations, classifier
evidence was obtained for each of the 10 trained spatial locations and
averaged across the time points of the pre-cue and post-cue delays,
respectively. This resulted in 10 (testing locations) x 10 (training loca-
tions) matrices indicating the confusability of each spatial location for
each delay period. Then for each delay period, each of the 15 participants’
matrices were vertically concatenated resulting in 150 (testing locations x
participants) X 10 (training locations) pre- and post-cue matrices,
respectively. These group-level classifier evidence matrices were then
used to calculate 10 x 10 correlation distance matrices. These correlation
distance matrices were submitted to MDS using the cmdscale function
implemented in R. The first three dimensions accounting for 70.7-
96.5% variance (Fig. S5a,d) were visualized. Each location was projected
onto a three-dimensional space showing the WM representational spaces
of the ROIs by time (Fig. 6b,c).

To statistically quantify the WM representational geometry, we
repeated the same procedures separately at the individual participant level.
Then, for each participant, we calculated the Euclidean distances among
the 10 spatial locations based on the three-dimensional coordinates of
the spatial locations, resulting in a Euclidean distance matrix (top row in
Fig. S5¢,h). Since we supposed that the WM representational geometry
might reflect either retinotopic or sequence position space, we estimated
a matrix representing each space, using the visual angle distance of spatial
locations (bottom row in Fig. S5¢,h). That is, the retinotopic matrix (left col-
umn of bottom row in Fig. S5¢) was created based on the visual angle dis-
tance among the 10 spatial locations. The sequence position matrix (right
column of bottom row in Fig. S5¢) assumed that locations corresponding to
the same sequence position were identical and thus corresponded to the
visual angle distance between five spatial locations with zero distance
between distinct spatial locations with the same sequence positions. In
order to measure the similarity between the Euclidean distance and visual
angle distance matrices, we calculated the Pearson’s correlation between the
vectorized upper triangle portion of the Euclidean distance and visual
angle distance matrices (excluding the diagonal) and performed Fisher’s
Z transformation for the statistical quantification.
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Statistical analysis. Statistical tests for decoding analyses were based
on permutation testing with 1,000 iterations. Permutation testing avoids
issues that can occur when testing against theoretical chance distribu-
tions at small sample sizes (Combrisson and Jerbi, 2015). For each iter-
ation, the classifier was trained and tested with shuffled decoding labels,
resulting in 15 null decoding accuracies (1 per participant) for each time
point (0,2, 4, 6, 8, 10, 12, and 14 s) and each ROI (left/right IPS and VC).
These null decoding accuracies were submitted to a one-tailed one-
sample ¢ test against chance (one-tailed since decoding accuracy is not
expected to be significantly below chance) and two-way repeated-
measures ANOVAs, resulting in null T or null F values, which formed
null distributions (Figs. 2, 3). Note that for t tests, this procedure is iden-
tical to comparing actual decoding accuracy to a null distribution of
decoding accuracies but generalizes more easily to repeated-measures
ANOV As. p values were the percentage of values in the null distribution
that were greater than or equal to the observed T or F values obtained
from the intact data, resulting in 0.001 as the lower limit for the p value.
We applied this calculation to other permutation statistical tests. (Note
that for two-tailed tests, p values were calculated based on the null distri-
bution of the absolute null T value and the absolute observed value).
Similar to the above, statistical tests on beta weights obtained from
RSA shown in Figure 5 were based on permutation testing over 1,000
iterations. For each iteration, the shuffled correlation coefficient RSA
matrix was submitted to model-based regression:

shuffled r ~ B, + B;SA + B,Concrete Retro
+ B;Concrete Pro + B,Abstract Retro
+ BsAbstract Pro. 2)

For each iteration, we obtained 15 null beta weights (1 per subject) for
each time point, each ROI, and each regressor (Concrete Retro, Concrete
Pro, Abstract Retro, and Abstract Pro). These null beta weights were sub-
mitted to one-tailed one-sample ¢ tests against a value of 0 (one-tailed
because only beta weights above a value of 0 are expected), two-tailed
paired ¢ tests and a two-way RM ANOVA, resulting in null T or null F
values, which formed the null distributions (Fig. 5a,b).

The statistical test on the brain-behavior correlation analysis was
based on a permutation test with 1,000 iterations. For each iteration,
we shuffled the participant order of 15 observed averaged beta weights
of interest and correlated it with the intact participant order of behavioral
data, resulting in the null distribution of the null T values (Fig. 5¢).

Statistical test on MDS shown in Figure 6 was based on permutation
testing with 1,000 iterations. Since the output of the cmdscale function in
R was used as the coordinates corresponding to WM representations for
10 spatial locations in 3D space, we shuftled the outputs but kept the label
of 10 spatial locations intact for each iteration. Using the shuffled multi-
dimensional 3D coordinates, we calculated the null Euclidean distances
between 10 spatial locations, generating a null Euclidean distance matrix.
These matrices were then correlated with either the intact retinotopic
matrices or sequence position matrices by vectorizing the upper triangu-
lar portion of each matrix. For the statistical test, the correlation value
was Fisher’s Z transformed, resulting in 15 null Fisher’s Z values (1 per
subject) for each time point, each ROI, and each space (retinotopic
and position). These null Fisher’s Z values were submitted to two-tailed
paired f tests, and two-way/three-way RM ANOV As, resulting in the null
distribution of the null T and F values (Fig. 6d.e).

For all statistical tests across multiple time points, multiple compar-
isons were corrected using false discovery rate (FDR; Benjamini and
Hochberg, 1995).

Data and code availability. Preprocessed data and all original code
have been deposited at Open Science Framework and are publicly avail-
able at https:/osf.io/n5ake/ as of the date of publication.

Results

Despite the importance of abstraction to WM and cognition, few
studies have examined abstract coding in support of WM. Some
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evidence has demonstrated that concrete sensory information of
the past can be recoded into a more abstract format such as trans-
lating a motion cloud to a line (Kwak and Curtis, 2022; Duan and
Curtis, 2024). Moreover, some studies have demonstrated that
when forthcoming actions can be anticipated, prospective action
codes are maintained (van Ede et al., 2019; Boettcher et al., 2021;
Henderson et al., 2022; Nasrawi and van Ede, 2022; Shushruth
etal., 2022). However, we know little about the abstract represen-
tations that reside in-between sensation and action which pro-
spectively and flexibly guide WM for the future. To fill this
gap, we designed a paradigm in which WM was guided by an
abstract sequence wherein we define abstraction as the ability
to generalize over contexts or instances (Badre and D’Esposito,
2007; Nee and D’Esposito, 2016; Bernardi et al., 2020; Badre et
al., 2021; Kwak and Curtis, 2022; Courellis et al.,, 2024; Duan
and Curtis, 2024). Here, each visual hemifield formed a distinct
context containing spatial locations that needed to be tracked
independently via WM. Critically, spatial locations in each visual
hemifield transitioned according to a common sequence (Fig. 1a)
such that the sequence formed an abstract code guiding WM.

Participants separately and continuously tracked spatial loca-
tions in the left and right visual hemifields (Fig. 1b). On each trial,
a cue indicated the relevant hemifield for the forthcoming probe
affording a prospective prediction of the sequencing-matching
location. Participants indicated whether the spatial location of
the probe followed the spatial location of the last stimulus in the
cued hemifield (reference). Half of the probes were matches while
half were non-matches with non-match probes equally drawn from
the three non-matching spatial locations excluding the reference
(i.e., there were no stimulus repeats). After responding, the spatial
location of the probe became the reference for the next probe of the
same hemifield. The cue was separated from the previous (pre-cue
delay) and forthcoming (post-cue delay) probes allowing for
periods to track WM codes of different forms (retrospective vs pro-
spective, concrete/location vs abstract/position; Fig. 1c).

Behavioral data indicated that participants performed the task
well (mean accuracy = 94.8%). To verify that participants appro-
priately prioritized relevant information (i.e., the cued hemifi-
eld), we separately characterized trials in which the cue
indicated the same visual hemifield as the previous trial
(“Repeat”) or the opposite visual hemifield (Switch”). As antici-
pated, reaction times (RT) and error rates (ER) were larger in
“Switch” (610.1 ms, 7.4%) relative to “Repeat” trials (594.5 ms,
3.1%; tu4y=2.53, p=0.024 for reaction time; f4)=3.44,
p=0.004 for error rate, paired ¢ tests; Fig. 1d) consistent with a
cost for switching priority. These data confirm that participants
performed the task as expected.

Location codes are transformed over time

We hypothesized that WM codes would transform over time
trading off from retrospective to prospective (Fig. 1c). Some
work suggests that sensory and mnemonic signals are multi-
plexed in the visual cortex and IPS (Rademaker et al., 2019;
Chunharas et al., 2025). Past work indicates that classifiers
trained on the late delay period data can isolate mnemonic sig-
nals (Iamshchinina et al., 2021; see also Riggall and Postle,
2012; Myers et al., 2015; Rademaker et al., 2019). In order to focus
on mnemonic representations, classifiers were trained on
patterns drawn from the end of the post-cue delay (12 and 14 s
post-stimulus onset) and then tested across time points from 0
to 14 s (see Fig. S4a for classifiers trained at the end of the pre-cue
delay). Classifiers were trained and tested separately for
each region-of-interest (ROI; left and right IPS and VC) to
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position 3 followed position 2, etc. Position 5 transitioned back to position 1 such that the sequence was circular. b, Task procedure. Each trial consisted of a pre-cue delay, a cue, and a post-cue
delay. At the start of each run, initial spatial locations were presented in the left and right visual hemifields. After an initial delay, a cue indicated the task-relevant visual hemifield wherein a
forthcoming probe would be presented following a post-cue delay. Participants determined whether the spatial location of the probe followed the spatial location of the last item that appeared
in the same hemifield. Half of the probes were sequence matches (e.g., position 2 following position 1) while half were non-matches (e.g., position 3 following position 1). The dotted lines
indicating the star trace are used for illustrative purposes and did not appear in the actual task. ¢, The potential transformation of relevant WM codes over time. After the probe stimulus
presentation, the spatial location of the just-probed stimulus (blue; concrete, retrospective code; hemifield-specific) and its sequence position (pink; abstract, retrospective code; hemifield-
general) could be maintained in WM. To optimally prepare for the future, these hypothetical codes would be transformed over time to the next location(blue)/position(orange). Irrelevant
(uncued) representations are included for completeness (dashed lines) but are not a main focus here. d, Mean reaction time and error rates. Behavioral performance was better when the
cue indicated the same visual hemifield as the previous trial (“Repeat”) relative to when the cue indicated the other visual hemifield (‘Switch”). Each line on the bar graph represents
each participant. Bold dots indicate the mean across participants with error bars representing 1 standard error of mean. *p < 0.05, **p < 0.01.

discriminate the activation patterns corresponding to each of the
10 spatial locations.

If WM codes transform over time, the location held in mind at
the end of the post-cue delay just prior to the probe (i.e., prospec-
tive) would differ from the location encoded during and shortly
after stimulus presentation (i.e., retrospective). Therefore, we
labeled each training pattern as though it coded for the cued, pro-
spective location (Fig. 2a). Then we tested the classifier separately
for each time point. We separately detailed classifier evidence for
the retrospective spatial location in the relevant hemifield
(retrospective-relevant; “Retro-rel”), the retrospective spatial
location in the irrelevant hemifield (retrospective-irrelevant;
“Retro-irrel”), the prospective spatial location in the relevant
hemifield (prospective-relevant; “Pro-rel”), and the prospective
spatial location in the irrelevant hemifield (prospective-
irrelevant; “Pro-irrel”; Fig. 1c). Relevance refers to the just-
probed hemifield in the pre-cue period and the cued hemifield
in the post-cue period. The results were averaged across hemi-
spheres for each of the IPS and VC, respectively.

Figure 2 depicts the classifier evidence for the retrospective-
relevant (“Retro-rel”) and prospective-relevant (“Pro-rel”) loca-
tions. In both the IPS and VC, classifier evidence for the
retrospective-relevant spatial location was significantly above-
chance levels during the pre-cue delay, whereas it dropped to
chance during the post-cue delay [note, all statistical tests are per-
formed against a permutation null (Combrisson and Jerbi, 2015);
see Materials and Methods]. In contrast, classifier evidence for
the prospective-relevant spatial location showed the opposite
pattern (Fig. 2b). Separating the data by post sequence-match

(Fig. S1a) and post sequence-non-match (Fig. S10) and by repeat
(Fig. S1c) and switch (Fig. S1d) trials revealed that these patterns
were shaped, but not driven by carry-over from prior trials
(sequence-match/non-match) or periods (repeat/switch). To fur-
ther quantify these patterns, we averaged each classifier evidence
within each delay period (from 2 to 6 s, “pre-cue”; from 10 to
14 s, “post-cue”) and submitted the data to a 2 (period: “pre-cue”
vs “post-cue”) X 2 (location: “Retro-rel” vs “Pro-rel”) repeated-
measures ANOVA for each of the IPS and VC (Fig. 2¢). We
observed a significant interaction of period and location in
both the IPS (F(y14)=19.35, p<0.001) and VC (F(y.14) = 16.33,
p<0.01) confirming a shift from retrospective to prospective
coding in each area.

To examine whether the timing of these transitions differed by
region, we performed ROI x location repeated-measures ANOVA
at individual time points. Significant interactions were observed
at 2, 4, and 6's (F(1,14>4.9, ps<0.01). Follow-up paired ¢ tests
revealed that the VC showed stronger evidence for the retrospective
relevant item than the IPS at 2 and 4s (ts4)>3.31, ps<0.01),
whereas the IPS showed stronger evidence for the prospective rel-
evant item than the VC at 6 s (f(14)=2.66, p=0.019). These data
suggest that although both areas transition from coding retrospec-
tive to prospective items, the VC more strongly codes for retrospec-
tive locations during the early delay, while the IPS shifts toward
coding for prospective locations earlier than the VC.

Most evidence for either the retrospective-irrelevant or
prospective-irrelevant spatial locations were at or under chance
(Fig. S2), indicating that decodable representations in the IPS
and VC were restricted to prioritized items as consistent with
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Figure 2.

Tracking retrospective and prospective codes over time. a, Decoding strategy to track retrospective and prospective WM codes over time. Classifiers were trained using data from the

end of the post-cue delay (12 and 14 s) and then tested at each time point. b, Retrospective-relevant (“Retro-rel”) refers to the classifier evidence corresponding to the spatial location of
the just-probed item. Prospective-relevant (“Pro-rel”) refers to the classifier evidence corresponding to the next spatial location following the reference (location following the previous probe
in the pre-cue delay; location following the previous probe of the cued hemifield in the post-cue delay). The significance at each time point is denoted by small and medium dots, representing
g <0.05and g < 0.01, respectively (FDR corrected). The inverted triangles denote the time points of the presentation of the probe and the cue, respectively. ¢, Average of classifier evidence in
each delay period (from 2 to 6 s, “pre-cue” period; from 10 to 14 s, “post-cue” period) for each ROI. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent +1 standard error of mean.

substantial past work (Lewis-Peacock et al., 2012; Sprague et al.,
2016; LaRocque et al., 2017; Lorenc et al., 2020; Yu et al., 2020). In
subsequent analyses, we will therefore focus on relevant items.

Taken together, the results indicate that WM was transformed
over the delay periods from retrospectively representing the past
to prospectively representing expectations for the future.

Abstract sequence information is coded in the IPS

In the current task, anticipation of prospective spatial locations in
each visual hemifield was guided by the same abstract spatial
sequence. Abstraction is commonly defined as generalization
across contexts (Bernardi et al., 2020; Badre et al., 2021; Kwak
and Curtis, 2022; Courellis et al., 2024; Duan and Curtis,
2024). Here, each visual hemifield formed a distinct context.
To test for abstract coding of sequence, we examined the extent
to which representations generalized across hemifields by train-
ing a classifier using representations from one hemifield and test-
ing it with representations from the other hemifield (cross-visual
hemifield decoding; Fig. 3a). Training and testing were per-
formed separately for each TR using labels of the relevant
sequence position. (Note that since training and testing is per-
formed separately for each TR, this analysis is agnostic to
whether the retrospective or prospective sequence position is
being decoded.) We found significant cross-visual hemifield
decoding during both the pre-cue and post-cue delays in the
IPS with decoding accuracy ramping up over time during both
phases (Fig. 3b). In contrast, in the VC, the classifier showed
above-chance decoding accuracy only during a single time point
in the pre-cue delay. To better quantify this result, we averaged

the decoding accuracies from 2 to 6s to form the “pre-cue”
period and from 10 to 14 s to form the “post-cue” period sepa-
rately for each region and submitted the data to a region
(IPS, VC) x period (“pre-cue,” “post-cue”) repeated-measures
ANOVA. Abstract sequence position was more strongly decoded
in the IPS relative to the VC (main effect of region F(; ;4)=8.74,
p=0.008; Fig. 3¢). Neither the main effect of period nor the inter-
action between period and region was significant. Collectively,
although there was some weak evidence for abstract codes in
the VC, abstract sequence information was prominent across
delay periods in the IPS.

Concrete and abstract codes of working memory are
transformed over time

To better examine the extent to retrospective, prospective, con-
crete, and abstract codes are multiplexed versus tradeoft over
time, we turned to representational similarity analysis (RSA;
Kriegeskorte et al., 2008). For each of the 10 spatial locations,
we extracted the patterns of activation in each of our four ROIs
(left and right IPS and VC). Training patterns were formed by
averaging over the last two time points of the post-cue delay as
we did above (see Fig. S4b for training during the pre-cue delay).
Then in a testing set, for each time point, we calculated the cor-
relation similarity between the activity pattern at that time point
and each training pattern (Fig. 4a). This was done separately for
each ROI. We then decomposed representations in the IPS and
VC into (1) coarse representations of the attended hemifield
(spatial attention); (2) fine-grained representations of the retro-
spective, relevant spatial location (concrete retrospective); (3)
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fine-grained representations of the prospective, relevant spatial
location (concrete prospective); (4) abstract representations of
the retrospective sequence position (abstract retrospective); and
(5) abstract representations of the prospective sequence position
(abstract prospective) using multiple linear regression (Lapate et
al.,, 2022; Jones et al., 2024). Each regressor represents a represen-
tational similarity matrix corresponding to a hypothetical pure
representation (see Materials and Methods; Fig. 4a). The regres-
sors incorporated distance-dependent similarity based upon nor-
malized visual angle (i.e., nearby locations are more similar to
one another than far locations). Concrete regressors were formed
by training/testing in the same hemifield, while abstract regres-
sors were formed by training/testing across hemifields. Based
on the analyses above, we expected that retrospective codes
would transition to prospective codes, both concretely and
abstractly (Fig. 4b).

As shown in Figure 5a, we found evidence consistent with
these predictions. In both the IPS and VC, a concrete retrospec-
tive code emerged early during the pre-cue delay but diminished
over time until it was absent by the end of the post-cue delay.
The fall of concrete retrospective codes was mirrored by rising
concrete prospective codes which started before the cue
(van Ede et al., 2021) and peaked at the end of the post-cue delay.
In the IPS, we observed a similar tradeoff in abstract codes
from retrospective to prospective. However, abstract codes
were not significantly observed in the VC. Interestingly,
abstract and prospective codes emerged at the same time point
in the IPS (4 s post-stimulus onset) and preceded the onset of

concrete prospective codes in the VC (6 s post-stimulus onset).
Although the sluggishness of the BOLD signal precludes
detailed timing information, the data are consistent with the
use of abstract sequence position to inform concrete expectations
of the future. In other words, the stimulus spatial location
(concrete retrospective) may be translated into an abstract
sequence position (abstract retrospective) which can then be
transformed into the next abstract sequence position (abstract
prospective), affording a prediction of the probe spatial location
(concrete prospective).

To further quantify these observations, for each region, we
averaged the beta weights from 2 to 6 s to form the “pre-cue”
period and directly contrasted the IPS and VC with paired ¢ tests
(Fig. 5b). Spatial attention was more strongly represented in the
VC than IPS (t4)=—3.85, p=0.006), whereas concrete retro-
spective coding did not differ between the regions (¢;4y=0.77,
p=046). In contrast, the IPS showed stronger coding of
the abstract retrospective (f14y=2.79, p=0.013), concrete
prospective (f;4=3.05, p=0.014), and abstract prospective
(t(12y=2.81, p=0.008) codes in the pre-cue period. These data
indicate that abstract and prospective codes emerge earlier in
the IPS than VC. Next, for each region, we averaged the beta
weights from 10 to 14 s to form the “post-cue” period. These
data indicated that spatial attention remained stronger in
the VC than IPS (f;4=-3.88, p=0.003), whereas concrete
(t(12y=2.84, p=0.013) and abstract (f4)=2.59, p=0.025) pro-
spective coding remained stronger in the IPS than the VC
(Fig. 5b). Finally, we cross-correlated the magnitudes of
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spective coding, concrete prospective coding, abstract retrospective coding, and abstract prospective coding. We estimated the beta weight for each regressor at each time point. Training patterns
were formed by averaging the activation patterns at 12 and 14 s post-stimulus onset. Hypothetical models were created assuming that the training patterns reflect the prospective location/
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the testing pattern of L1 during the “post-cue” delay period.

prospective codes during the post-cue period. Abstract pros-
pective codes in the IPS were correlated with concrete prospec-
tive codes in the IPS (r=0.78, p=0.002), which were,
in turn, correlated with concrete prospective codes in the VC
(r=0.62, p=0.016). However, abstract prospective codes in
the IPS were not themselves correlated with concrete prospective
codes in the VC (r=0.21, p =0.454). Moreover, the relationship
between concrete prospective codes in the IPS and VC
remained after partialing out shared variance with abstract
prospective codes in the IPS (r=0.62, p=0.018). Although
low sample sizes render these findings preliminary, these data
are consistent with a transformation and relay of codes support-
ing WM.

Next, we examined how representational codes were related
to behavioral performance. We reasoned that behavioral pre-
paredness (i.e., faster RTs) would be related to prospective cod-
ing, rather than retrospective coding. Consistent with this idea,
RT was negatively related to abstract prospective coding during

the post-cue period in the IPS (r=-0.63, p=0.014), but not
VC (r=-0.33, p=0.232). A similar, nonsignificant trend was
observed for concrete prospective coding in the IPS (r=-0.42,
p=0.129). However, this trend appeared to be driven by shared
variance with abstract coding (described above) as partialing
out concrete prospective coding left the relationship between
abstract prospective coding in the IPS and RT largely intact
(r=-0.5264, p=0.055) while the reverse was not true
(r=0.1029, p=0.72). Moreover, concrete prospective coding
in the VC was unrelated to RT and reversed in sign (r=0.19,
p=0.508). Similarly, concrete and abstract retrospective coding
during the pre-cue period was non-significantly related to RT
(ps>0.3). These results were replicated when using inverse
efficiency indicating that the results could not be attributed to
a speed-accuracy tradeoff (Fig. S3). Although conclusions should
be taken with some measure of caution due to the sample sizes,
collectively, these data suggest that abstract prospective coding
in the IPS facilitates future behavioral performance.
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Figure 5.  Simultaneous and dynamic coding of the past and future. a, The estimated beta weights for each regressor at each time point. The beta weights were compared against a value of 0

and corrected for multiple comparisons using false discovery rate (FDR). The significance at each time point is denoted by small and medium dots, representing g < 0.05 and g < 0.01, respec-
tively (FDR corrected). The shaded regions represent +1 standard error of mean. The inverted triangles in black denote the time points of the presentation of the probe stimulus and the cue,
respectively. b, To contrast the IPS and VC, spatial attention and each WM code were separately formed by averaging beta weights during the “pre-cue” period (2—6 s) and the “post-cue” period
(10-14 s) in each ROL. Error bars represent +1 standard error of mean. *p < 0.05, **p < 0.01. ¢, Correlations between the strengths of WM codes and RT for each ROI. Each dot represents each

participant.

WM representational space is reorganized over time
The RSA analyses revealed multiplexing of representational
codes supporting WM in both the IPS and VC. To more directly
visualize these representations, we turned to multidimensional
scaling (MDS) which helps to elucidate representational geome-
try. For each delay period, region, and time point, we submitted
the similarity structure of the 10 spatial locations to MDS and
plotted each location in the space formed by the first three
dimensions (see Materials and Methods). We performed this
analysis in two ways. First, we trained and tested on a
TR-by-TR basis as we did with the cross-hemifield decoding
analysis. This allows visualization of the dominant geometry
over time (dominant geometry). Second, we trained on the end
of the post-cue delay (12 and 14 s post-stimulus onset) as we
did with the temporal generalization and representational simi-
larity analyses. This allows honing in on mnemonic codes (mne-
monic geometry).

Each analysis revealed a clear geometry during each delay
period and transformation of the representations supporting

WM over time. Starting with the dominant geometry, during
the “pre-cue” period, representations were separated by hemifi-
eld along the first dimension in both the IPS and VC (Fig. 6b,
Fig. S5b). For both areas, a clear circular geometry was present
across the second and third dimensions resembling the structure
of the visually presented locations (Fig. 6b, Fig. S5c). Across
hemifields these circular structures were vertically aligned but
mirror-reversed consistent with distance in retinotopic space
(e.g., position 2 in the left hemifield is close to position 1 in the
right hemifield; Fig. 6a). Hence, retinotopic space was well reca-
pitulated across the three dimensions of MDS in both the IPS and
VC. Similar results were obtained in the VC for the mnemonic
geometry (Fig. 6¢). In the IPS, the mnemonic geometry was
also split by hemifield. However, in this case, the sequence posi-
tions across the hemifields were aligned along the second and
third dimensions. Thus, the mnemonic geometry revealed evi-
dence of abstraction. These data indicate that retinotopic and
abstract sequence codes were multiplexed in the IPS, while the
VC represented retinotopic codes.
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dominant MDS geometry. Spatial locations are separately color coded by sequence position. Spatial locations in the left and right visual hemifields are connected by solid and dotted black lines,
respectively. ¢, Each of the 10 spatial locations is plotted by the first three dimensions of the group-level mnemonic MDS geometry. Spatial locations are separately color coded by sequence
position. Spatial locations in the left and right visual hemifields are connected by solid and dotted black lines, respectively. d, The result of the correlation between Euclidean distance among
locations calculated in retinotopic space (blue) and position space (orange) and the dominant MDS geometry space. Note that the correlation analysis was performed at the individual participant
level. Each line on the bar graph represents each participant. *p < 0.05, **p < 0.01, ***p =0.001. Error bars represent +1 standard error of mean. e, The result of the correlation between
Eudidean distance among locations calculated in retinotopic space (blue) and position space (orange) and the mnemonic MDS geometry space. Note that the correlation analysis was performed
at the individual participant level. Each line on the bar graph represents each participant. *p < 0.05, **p < 0.01, ***p=0.001. Error bars represent +1 standard error of mean.

In the “post-cue” period, the dominant geometry and mne-
monic geometry were similar to one another in the IPS and
VG, respectively, but differed across regions. In the IPS, hemifield
discrimination was reduced and relegated to the third dimension
(Fig. 6b,c). A circular geometry resembling the star-sequence was
observed along the first and second dimensions (Fig. S5b,e).
These circular geometries were aligned by position across

hemifields. In VC, hemifield discrimination remained prominent
along the first dimension. Alignment by sequence position was
also observed in VC, albeit across the second and third dimen-
sions (Fig. S5¢,f). That is, the “post-cue” geometry in the VC
resembled the “pre-cue” mnemonic geometry of the IPS.
Hence, representational transformations were observed in both
the IPS and VC transitioning away from a concrete, retinotopic
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codes toward abstract, position codes. However, the areas
differed in their principal coding axis. The IPS more prominently
coded for sequence position while the VC more prominently
coded for hemifield.

To quantitatively evaluate the representational dynamics in
the multidimensional space, we examined the extent to which
Euclidean distance among representations in each of the domi-
nant and mnemonic geometries resembled retinotopic distance
and abstract position distance. Retinotopic distance was calcu-
lated as the distance in visual angle among spatial locations.
Position distance was calculated similarly but assumed that posi-
tions across hemifields were identical (Fig. S5¢,h). For each sub-
ject, we correlated the matrix of Euclidean distances in each MDS
geometry with the matrix of visual angle distances in retinotopic
and position space, respectively, separately for the pre- and post-
cue delays. Correlation values were z-transformed and submitted
to a period (“pre-cue” vs “post-cue”) by region (IPS vs VC) by
space (retinotopic vs position) repeated-measures ANOVA
(Fig. 6d,e).

For the dominant geometry, we found a significant three-way
interaction (F(;,14)=>5.44, p=0.035; see Table 1 for complete
stats). Specifically, in the “pre-cue” period, the representational
geometry closely resembled retinotopic space much more so
than position space in both the IPS and VC (region x space
repeated-measures ANOVA in the “pre-cue” period; main
effect of space; F(j14y=2,181.08, p=0.001). In contrast, in the
“post-cue” period, the IPS representational geometry was more
similar to the sequence position space than the retinotopic space,
whereas the reverse was true in the VC representational geometry
(region x space repeated-measures ANOVA in the “post-cue”
period; region x space interaction: F; 14)=12.72, p=0.004). For
the mnemonic geometry, a three-way interaction was not signifi-
cant (F,14)>1.63, p=0.222; see Table 2 for complete stats).
Instead, a significant region x space interaction was observed
(F(1,14)= 14.05, p=0.003) driven by more prominent retinotopic
than abstract position coding in the VC in both the “pre-cue” and
“post-cue” delays with the opposite true of the IPS. Nearly iden-
tical results were observed when repeating this analysis using the
full MDS space rather than the first three dimensions.

Taken together, these results suggest that representational
geometries in the IPS and VC were organized in a different man-
ner. Specifically, concrete, retinotopic, and abstract, sequence
position codes were multiplexed in the “pre-cue” delay in the
IPS. Over time, retinotopic coding gave way to abstract sequence
position codes. In contrast, VC representational geometry was
dominated by a concrete, retinotopic code across delays.

Table 1. Repeated-measures ANOVA results associated with Figure 6d
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Discussion

Although WM guides future cognition (Nobre and Stokes, 2019),
the mechanisms supporting the transformation of the past into
abstract codes that prepare for the future have been elusive. Here,
we found evidence for concrete, retrospective codes in the VC
and the IPS when human participants maintained past sensory
information. Over time concrete, retrospective codes disappeared
concomitant with the appearance of prospective codes. This tran-
sition was marked by the emergence of abstract sequence position
codes in the IPS. Moreover, the strength of abstract prospective
coding in the IPS was related to efficient behavioral performance
consistent with a signal that prepares for future cognition. Lastly,
dimensionality reduction (MDS) revealed that concrete, sensory,
and abstract sequence position codes were simultaneously present
in the IPS early in the delay. Over time, sensory codes dissipated
and abstract sequence position codes dominated. In contrast, rep-
resentations in the VC remained more sensory-like both early and
late. Taken together, these results detail how WM transforms to
support future cognition with dissociable roles of VC more strongly
representing concrete, sensory-like codes and the IPS more
strongly representing the abstract future.

Substantial work has revealed that concrete retrospective sen-
sory signals can be decoded in the IPS and VC during WM delay
periods (Harrison and Tong, 2009; Serences et al., 2009; Ester et
al., 2015; Bettencourt and Xu, 2016; Sprague et al, 2016;
Rademaker et al., 2019). These findings have led to the conclu-
sion that both regions serve as critical sites for the storage of
visual WM. However, a central function of WM is the transfor-
mation of past information into future-relevant information.
Studies have provided evidence for prospective coding of antici-
pated actions (van Ede et al., 2019; Boettcher et al., 2021), spatial
locations (Gunseli et al., 2024; Liu et al., 2024), and visual objects
(Lewis-Peacock and Postle, 2008; Lewis-Peacock et al., 2012).
Building on these findings, our data show that the representation
of past spatial locations in the IPS and VC transform into antic-
ipated spatial positions when preparing for a sequential probe.
Moreover, representational geometry analyses revealed that rep-
resentational codes become abstracted away from sensation such
that locations that are retinotopically distant nevertheless align in
representation space when they share meaningful features
(Courellis et al., 2024). This result implies that the IPS and VC
store not only the concrete past but also the anticipated future,
with the future stored in a more abstract format than the past.
These data are consistent with suggestions that abstraction facil-
itates planning for the future (Ho et al., 2019).

Table 2. Repeated-measures ANOVA results associated with Figure 6e

RM ANOVA Factors F p RM ANOVA Factors F p
3-way Space 180.750 0.001 3-way Space 7.902 0.014
Period 116.943 0.001 Period 3.318 0.083
Region 2233 0.151 Region 21.762 0.001
Space X period 297.681 0.001 Space X period 5.783 0.029
Region X space 14.571 0.003 Region X space 14.045 0.003
Period X region 0.610 0.465 Period X region 2.864 0.104
Space X period X region 5.439 0.035 Space X period X region 1.631 0.222
2-way (“pre-cue” period) Space 2,181.076 0.001 2-way (“pre-cue” period) Space 14.498 0.001
Region 0.720 0.429 Region 10.659 0.004
Region x space 0.943 0.335 Region x space 9.113 0.007
2-way (“post-cue” period) Space 0.312 0.579  2-way (“post-cue” period) Space 0.651 0.433
Region 1.781 0.218 Region 9.431 0.013

Region X space 12.716 0.004

Region X space 11.493 0.003

Fisher transformed correlation value was submitted to each RM ANOVA.

Fisher transformed correlation value was submitted to each RM ANOVA.
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Our findings align with evidence for the dissociable contribu-
tion of the IPS and VC to visual WM. For example, the presence
of a distractor during a WM delay disrupts or biases WM repre-
sentations in the VC, whereas WM representations in the IPS are
robust against distractors (Bettencourt and Xu, 2016; Lorenc
et al., 2018; Rademaker et al., 2019). This implies that the IPS
may store not only concrete, sensory-like WM codes but also
non-stimulus-driven WM representations that are transformed
away from the sensory signals (Rademaker et al., 2019).
Consistent with this, our data show both concrete sensory and
abstract position signals in the IPS with concrete representations
transitioning into abstract representations over time. In contrast,
transformations and transitions in the VC were weaker. The
hints of such signaling in the VC may be due to top-down signals
from the IPS. Such an idea is consistent with recent work show-
ing that during WM delays, the IPS shapes the contents of VC
through feedback (Xu, 2023), which could potentially be exam-
ined in future work by distinguishing representations across lay-
ers of VC (van Kerkoerle et al., 2017; Lawrence et al., 2018).
Moreover, the strength of abstract prospective codes in the IPS
were related to improved behavior. Collectively, these data indi-
cate dissociable roles of the VC and IPS with the former involved
in concrete, sensory representation and the latter important
when abstract, prospective codes facilitate performance
(Brincat et al., 2018). These data are broadly consistent with cor-
tical progressions from sensory to more abstract coding
(Mesulam, 1998; Brincat et al., 2018).

Recent work has shown that VC representations supporting
WM can generalize across gratings and motion directions into
an abstract line-like format (Kwak and Curtis, 2022) and can
show invariance to aperture biases (Duan and Curtis, 2024). In
those works, generalization was examined within the same spatial
receptive field. Here, we examined generalization across spatial
receptive fields (i.e., across visual hemifields). Hence, that
abstract coding was weak or absent in the VC in our data does
not undermine the presence of other forms of abstract coding
in the VC. Rather, there may well be different levels of abstraction
which transition across the visual hierarchy. Since we did not
perform retinotopic mapping to carefully tease apart different
levels of the visual hierarchy, here examination of how abstract
coding in the present task varies along the levels of the visual
hierarchy is a question for future work.

Some work has indicated that WM for features (i.e., orienta-
tion) is represented in a spatially global manner in VC (Ester et
al., 2009). Even in perception, neurons and voxels tuned to par-
ticular features show elevated activity for preferred features that
are presented outside of their receptive fields (Treue and
Martinez Trujillo, 1999; Serences and Boynton, 2007). Spatially
generalized coding of features may facilitate the detection of
behaviorally relevant features when their location is uncertain
such as in visual search. However, it is unclear whether the spa-
tially global spread of feature coding observed in those cases and
the generalization of spatial position observed here reflect similar
mechanisms. In either case, similar to what we observe here,
Ester et al. (2009) did not observe cross-hemifield generalization
in VC despite the ability to decode orientations held in WM from
ipsilateral VC. This suggests that VC retains some element of
spatial specificity in its coding.

Abstraction in WM is thought to transform its representa-
tional structure—reflecting past content—into a future-oriented
format to guide the upcoming task (Myers et al.,, 2017; Wang
et al, 2019; Xie et al, 2022; van Ede and Nobre, 2023).
Panichello and Buschman (2021) contrasted selection from
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WM with selection from perception (i.e., attention) in monkeys.
They found that selection in both forms generalized in the pre-
frontal cortex (PFC), providing evidence for an abstract mecha-
nism of control. Moreover, PFC representations of WM items
transformed from a pre-cue subspace wherein WM representa-
tions for different colors were multiplexed with location, to a
post-cue subspace wherein representations for different colors
aligned regardless of location. The same transformation in repre-
sentational geometry was also observed in a recurrent neural net-
work trained to carry out an equivalent cued-recall paradigm
(Piwek et al., 2023; see also Wan et al., 2024). Here, we observed
a similar transformational alignment (i.e., from retinotopic space
to sequence position space), particularly in the IPS. Observing
these signals in the IPS here may be due to the fact that spatial
information remained relevant for the task and that the IPS
and other dorsal stream areas are important for the representa-
tion of space (Mishkin et al., 1983). These findings align with
the proposition that abstraction in WM is reflected in the trans-
formation of representational structure into a future-oriented
format.

Consistent with past work, we show that sensory and mne-
monic information are multiplexed in the IPS (Rademaker et
al., 2019). Importantly, training classifiers during periods far
removed from perception enabled our analyses to focus on mne-
monic representations, thus ruling out that the transformations
observed here simply reflect a shift from perception to memory.
However, training classifiers on the pre-cue delay also demon-
strated a transition from retrospective to prospective (Fig. S4a)
and concrete to abstract (Fig. S4c), albeit with greater emphasis
on retrospective and concrete codes. These results indicate that
while the patterns observed here are robust across training peri-
ods, different analysis approaches can emphasize either sensory-
like or abstract codes within the multiplexed representations
(Iamshchinina et al., 2021).

One potential approach for examining the contents of WM in
a more time-resolved manner would be to analyze eye move-
ments. Recent studies have shown that microsaccades and/or
spatial biases in gaze dynamically track the spatial locus of work-
ing memory (van Ede et al,, 2019; van Ede et al,, 2021; Liu et al,,
2022; Liu et al., 2024). This is consistent with the close link
among eye movements, attention, and WM (Ikkai and Curtis,
2011; Jerde et al., 2012; Jerde and Curtis, 2013). Hence, it is likely
that subtle changes in eye position may track the contents of WM
in the present study. However, how eye position relates to the
maintenance of abstract codes that are not tied to any one posi-
tion in space remains an open question. This would be a fruitful
topic of future study.

In sum, a combination of multivariate decoding, RSA, and
MDS revealed that both IPS and VC initially maintained concrete
past locations. Over time, these representations became progres-
sively more abstract and prospective especially in the IPS. These
results suggest that WM guides future cognition by reformatting
sensory signals of the past into more abstract codes to guide
prospective expectations.
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